Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
Show that each function is a solution of the given initial value problem.Differential equation$$y^{\prime}+y=\frac{2}{1+4 e^{2 x}}$$Initial equation$$y(-\ln 2)=\frac{\pi}{2}$$Solution candidate$$y=e^{-x} \tan ^{-1}\left(2 e^{x}\right)$$
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Bobby Barnes
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
Calculus 1 / AB
Calculus 2 / BC
Chapter 7
Integrals and Transcendental Functions
Section 2
Exponential Change and Separable Differential Equations
Functions
Trig Integrals
Harvey Mudd College
Baylor University
University of Nottingham
Idaho State University
Lectures
02:15
In mathematics, a trigonometric integral is an integral of a function of one or more complex variables, with respect to a complex parameter. Trigonometric integrals are one of the main types of integrals studied in complex analysis.
05:01
Trigonometry is a branch of mathematics that studies relationships involving lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The 3rd-century astronomers first noted that the lengths of the sides of a right-angle triangle and the angles between those sides have fixed relationships: that is, if at least the length of one side and the value of one angle is known, then all other angles and lengths can be determined algorithmically. The study of the relationships between the sides and angles of triangles is the subject of trigonometry.
02:44
Show that each function is…
02:13
02:27
02:02
02:45
02:04
Show that each function $y…
we want to show that this initial value problem is a solution for our differential. Equus. Well, let's first go to fear. What? Why prime should be, Because then at that point, we just start plugging everything in. So they have why prime is equal to. So they take the derivative that we're gonna need to use, uh, product rule to start. So it would be negative. He to the negative action. Let me screw this over so we don't run out of room. So why primes, Eagleton? Negative e to the negative x tangent inverse of to heed the X. And then plus, now we take the derivative of tangent in verse, and that should be so first. That's right. This so it's gonna be one over. That's for Marie. You 1/1 plus u squared. So that should be won over. So war he to the two X and then we need to apply chain rule. So we take the derivative of our inside function, which is going to be to e to the X right now. Go Z to the X's cancel out there. So that's nice. Now what we want to do is use our initial value here and just start plugging everything. Get so let's local, the Senate and solve for y prime and see what we get. And then we can plug that value into our equation down there to see if we get the same thing. So this is gonna be why Prime is equal to to over one plus for he to the two x minus. Why now we're told that win. So this is X is equal to negative Natural log of two. Our output. Why should be pie? Don't Let's go ahead and plug that it. So we're gonna have to over one plus four. No, he to the negative natural log, too. Well, we can pull that negative to power inside, and I should be e to the natural log of one board. So now the e and natural log accounts out with each other and actually kind of keep on going, And then why should be high half now? Like I was saying, before the those counts out that we have one plus 1/4 which is five force to over by force minus pi uh, which should give us 8/5 minus pi out. So This is what we want to show why Prime is equal to. So now let's go ahead and plug this in the white prime. So why Prime is equal to So we want to plug in negative natural auger, too into here for all the exes. So let's see. So that will give us negative too Tangent in verse of now e to the negative selections to be 1/2. So we should have Tanja Inverse. Um, one plus then we have two times, Let's see one plus, Actually, that's the same thing that we had before. Or if we look up there so I should just be the or or 1/4 right here and now let's think so. Tangent inverse of one should be pie fourth, but we multiply that by negative. Tues. That's negative. Pie half. And then over here we would get the eight equals, but waas plus eight over. So that is we get why prime at negative. Natural too is equal to what we got when we solved or why Prime originally. So it looks like it does check out
View More Answers From This Book
Find Another Textbook
03:55
Assume that we want to construct a confidence interval. Do one of the follo…
01:07
The following two events are occurring independently. The odds of you winnin…
01:08
01:12
01:05
01:09
01:06