Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Sketch the region enclosed by the given curves an…

04:13

Question

Answered step-by-step

Problem 26 Hard Difficulty

Sketch the region enclosed by the given curves and find its area.

$ y = \sinh x $ , $ y = e^{-x} $ , $ x = 0 $ , $ x = 2 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Kenneth Kobos
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Kenneth Kobos

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 1

Areas Between Curves

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

02:55

Sketch the region enclosed…

10:21

Sketch the region enclosed…

04:48

Sketch the region enclosed…

03:38

Sketch the region enclosed…

00:40

Sketch the region enclosed…

03:08

Sketch the region enclosed…

04:46

Sketch the region enclosed…

05:53

Sketch the region enclosed…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

We want to find the area enclosed by these four equations. So first, let's do a quick sketch to see what they with these equations look like. The 1st 1 is Why's the hyperbolic sign of X? Or some people say Cinch X? Um, the second equation is e to the negative X. Are these air just sketches? So they're not 100% accurate. Let's get the 3rd 1 For now, let's actually show the 4th 1 X equals two, which is somewhere there. And if we were to pluck from the 3rd 1 X equals zero Hey, we wouldn't have an enclosed region. So the way that this question is posed, there's actually a mistake. This should say why equal zero, which would give us this region from this line over here. And so we get this enclosed region here. So that's the area that we want to determine. I'm so of course we're gonna be integrating. So we're going to integrate from X equals zero two X equals two of whatever our top of function is on the region minus our bottom function. However, we do have this point over here where the top function changes so we want to figure out first. What is the X value here? X equals question Mark. So the way that we solve this is to equate the two equations that cross at this point the 1st 1 beings sin checks and the 2nd 1 being e to the minus X. So let's just equate those himself for X meat to the miners X. So we recall that cinch X is e to the X minus e to the negative X and that over too on we create that eat a negative X and then we just solve for X so we can multiply both sides by to e to the X And in here we have e to the minus X and each of the ex canceling to give us one. So we have a two on the right side. We have two's canceling here and we distribute e to the X. So we get e to the two x minus one. So we bring this one over, we have a three and then we take the natural log a rhythm that's an X equals natural logarithms of three. So X is equal to ah half of London of three or bringing this half inside. We can write this as long of screwed three. So that's the point of intersection over here. So X is lunch of route three. So to integrate over, to integrate, um, to find the area of this region, we're going to writers to inter girls first going from X equals zero X equals one over three, and the second Integral is going to go from X equals a lot of room 32 X equals two. So let's write that up. Uh, area is equal to integral. We said X equals zero to London of route three. Um, and what we have to do is take the in the top function, minus the bottom function. Over here, the top function is cinch X, and the bottom function is X equals or y equals zero s. So we just subtract those cinch x minus zero. I I won't write the minus zero d X plus integral. We're going from lawn of Route three two X equals two. And so we have our top function minus their bottom function. Here, the top function is eating negative X, and the bottom function once again is y equals zero So we integrates e to the negative X minus zero. This is D X and then so we recall that the anti derivative of cinches, cautious or hyperbolic, co sign Kash X. We're going from zero to lawn of route three plus Ah, the integral or the anti derivative of Eton. Negative X is negative E to the minus X And here we're going from loan over three up to two. And so the second piece should be easy enough. But the first piece, we have to recall that caution X equals E to the X plus e to the minus X over two by definition, and then so plugging everything in here we have a route three plus one over route three all over, too. We subtract the one No, we add, um, we plug in X equals two so negative e to the minus two or one of re squared, Uh, and then we subtract. But then we have a minus on them. Another minus. So that becomes plus so e to the negative. Long over three will work out to be won over three. And after simplifying everything, we get screwed three minus one minus one over East Squared, which works out to be approximately 0.59

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Recommended Videos

02:55

Sketch the region enclosed by the curves and find its area. $$ y=e^{x}, y=e^{2 …

10:21

Sketch the region enclosed by the given curves and find its area. $y=e^{x}, \q…

04:48

Sketch the region enclosed by the curves and find its area. y = e^x , y = e^(2x…

03:38

Sketch the region enclosed by the given curves and calculate its area. $ y =…

00:40

Sketch the region enclosed by the given curves and calculate its area. $ y =…

03:08

Sketch the region enclosed by the curves and find its area. $$ x^{2}=y, x=y-2 $$

04:46

Sketch the region enclosed by the given curves and find its area. $ y = \fra…

05:53

Sketch the region enclosed by the curves and compute its area as an integral al…
Additional Mathematics Questions

01:35

The following stem and leaf plot shows the scores on a recent
test of pre…

03:35

A newspaper finds that the mean number of typographical errors
per page i…

02:17

Use a graphing calculator (or computer) to find
approximate x-coordinates…

01:09

A social scientist learns, upon analyzing her data, that the
correlation …

05:55

A sample of 150 individuals (males and females) was surveyed,
and the ind…

02:25

Find the percentage rate of change of f(x) at the
indicated value of x. R…

02:13

What is the t value for a 90% confidence interval based on a
sample size …

01:43

Is the number of games won by a major league baseball team
in a season r…

02:01


4. A regression analysis relating a company’s sales, their
advertisin…

02:02


The Damon family owns a large grape vineyard in western New York
alon…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started