Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Racing cars driven by Chris and Kelly are side by…

09:31

Question

Answered step-by-step

Problem 46 Hard Difficulty

Sketch the region in the xy-plane defined by the inequalities $ x - 2y^2 \ge 0 $ , $ 1 - x - \mid y \mid \ge 0 $ and find its area.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Kenneth Kobos
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Kenneth Kobos

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 1

Areas Between Curves

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

05:10

Sketch the region in the $…

03:03

Area of a Region Sketch th…

01:49

Sketch the region that cor…

04:04

Area of a Region Sketch th…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

we want to sketch the region defined by these two inequalities and then determine the area of that region. Okay, so we're gonna do a sketch in our X Y plane. As usual, we have your ex and we have our y axes. Okay, Uh, so with these inequalities, usually what we'd like to do is to sulfur. Why as a function of X. But however, because of this absolute value of why, over here, um, we're actually going to solve for X in terms of why, For both of these inequalities, this is going to give us X is greater than or equal to two. Why squared and in green, we're going to have X is less than or equal to one, minus the absolute value of why. Okay, so now what we have here are two ah, functions of why so when we put these, we're going to kind of think of the graph is being sideways. So let's put the blue one first. Um X. So let's take a look at, um, X is equal to two. I squared. So thinking of X as so we see that this is going to be a problem. Um, but It's going to be a sideways problem just by thinking of this with her head turned sideways. And then what we're interested in is ex being greater than or equal to two y squared. So that's actually going to be the inside region here. Now let's take a look at the green one. Ah, we have X less than or equal to one minus y squared. So first, let's plot. Why equals one minus absolute? Why? So we know that when why is zero We have our point here at one. And then we're subtracting an absolute value, which means that as we go away from Y equals zero, our ex values will decrease. So we are interested in X being less than or equal to one minus absolute way, which is going to give us this region over here. So in fact, we see that there is an enclosed region, or rather, a region, uh, which overlaps between these two inequalities and let's color it in red. So that's the area that we want to determine. So it's going to be more instructive to do this as an integral of why, so that we can integrate. Um, we see that this function is even or symmetric across this X axis. So if we just determined one of these areas, we can double it to determine the total area. Okay, let's put this into equations. Area is going to be equal to two times the area of for example, let's take the top region. So we know that we're going to be integrating from here. Why equals zero to here, which is why equals? We have to determine the intersection point. So let's do that. We want to find out what points are two ex functions which are functions of way. Uh, at what point do they intersect? Remember, our first function was X equals two y squared, and the second function is X equals one minus absolute way. So we want to determine when these two functions intersect. Remember, we are taking why greater than zero. So this is going to tell us that this second function is just going to be one minus y. So we wanted a cell for two y squared is equal to one minus way or bringing everything to one side to y squared plus y minus one equals zero so we can use the quadratic formula we're going to give. I'd get to values for why? Why is going to be either negative one or a positive half? But since we're interested in why being greater than or equal to zero, we're going to take y to be 1/2. So what does this tell us? This tells us if we look back to the graph, this upper value for why is actually why equals 1/2. So are integral is gonna be going from why equals zero upto y equals half and it's going to be a d. Y integral. Since we're integrating in the UAE variable No, we have to use our top function minus their bottom function. So what is our top function here? Well, thinking of this again with her head turned sideways, this green function is on top on by on top. I mean, there it takes hire ex values and the bottom function will be the blue one since it takes lower since it takes lower X values. So what we're going to do is take our tough function, which is green, and we subtract our bottom function, which is a blue. So we're going to do one minus y minus two y squared Notice here. I didn't put in the absolute value since we're only considering X being positive. Okay, so now we just carry out this integral. So is equal to two anti derivative Here is why minus half. Why squared minus to over three. Why? To the three. And we're going from 0 to 1/2. So I plug in our limits and we see what we get. So we have a two out here plugging in like was half. We get half minus half times one over four, minus 2/3 times half cubed is one over eights. And then after simplifying everything, we get our final answer off. Seven over 12. As the area of the enclosed region of the total enclosed region.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
129
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
63
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Recommended Videos

05:10

Sketch the region in the $x y$ -plane defined by the inequalities $x-2 y^{2} \g…

03:03

Area of a Region Sketch the region in the coordinate plane that satisfies both …

01:49

Sketch the region that corresponds to the given inequalities, say whether the r…

04:04

Area of a Region Sketch the region in the coordinate plane that satisfies both…
Additional Mathematics Questions

02:40

Mrs Neo has two packets of flour. The ratio of the mass in Packet A to the m…

01:55

The base of a triangle is longer than twice its corresponding height by 1 cm…

03:56

in a thriathlon, an athlete swims 750 m in 15 minutes, cycle at an average s…

01:07

cosec 30° + cosec 60° + cosec 90° / sec 0° + sec 30° + sec 60° =

00:55

90° adalah....
A. 1,75 radian
B. 17,5 radian
C.0,157 radian
D. 1…

00:51

At noon one day outside temperature temperature is 4°c, By Midnight the temp…

02:20

Sonia bought 85 packs of bookmarks.She repacked them into smaller packs of 2…

01:10

Please do it fast and make the way
a coin has mass of 7.0g. It is made o…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started