Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Solve the differential equation. $ (e^y - 1)y' =…

00:48

Question

Answered step-by-step

Problem 4 Medium Difficulty

Solve the differential equation.
$ y' + xe^y = 0 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Amrita Bhasin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Amrita Bhasin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 9

Differential Equations

Section 3

Separable Equations

Related Topics

Differential Equations

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

01:18

Solve the differential equ…

03:24

Solve the given differenti…

01:40

Solve the differential equ…

00:38

Solve the given differenti…

Watch More Solved Questions in Chapter 9

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54

Video Transcript

this question us is to solve the differential equation. Why one plus X each the power of why is equivalent to zero first things first. We want to write this in terms of D y DX. We know why one is the same thing as D y detox. This is set equal to negative X each the why it's negative because we'll bring it over to the right hand side. Now we know we want to write this just with the wise on one side and the exes on one side. So do a little bit of manipulation to write. Eat the negative Y Do y is equivalent to negative acts. D Backs again acts on one side, wise on one side. Take the integral of both sides and we have e to the negative fly is X squared over two plus c. Don't forget the constant integration. Now take the natural walk of both sides. We know that Ln times e is just one. We have negative. Why is natural log of X squared over two plus c last step. We want this in terms of positive. Why not negative? Why

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Differential Equations

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

01:18

Solve the differential equation. $ y' + xe^y = 0 $

03:24

Solve the given differential equation. $$x y^{\prime \prime}+y^{\prime}=0$$

01:40

Solve the differential equation. $$y^{\prime}+x e^{y}=0$$

00:38

Solve the given differential equation. $$y y^{\prime}=x y^{2}+x, y(0)=0$$

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started