Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

A metal cable has radius $ r $ and is covered by …

01:44

Question

Answered step-by-step

Problem 81 Hard Difficulty

Some populations initially grow exponentially but eventually level off. Equations of the form
$$ P(t) = \frac{M}{1 + Ae^{-kt}} $$
where $ M $, $ A $, and $ k $ are positive constants, are called logistic equations and are often used to model such populations. (We will investigate these in detail in Chapter 9.) Here $ M $ is called the carrying capacity and represents the maximum population size that can be supported, and $ A = \frac{M - P_0}{P_0} $, where $ P_0 $ is the initial population.
(a) Compute $ lim_{t\to \infty} P(t) $. Explain why your answer is to be expected.
(b) Compute $ lim_{M\to \infty} P(t) $. (Note that $ A $ is defined in terms of $ M $.) What kind of function is your result?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Carson Merrill
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Carson Merrill

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:23

WZ

Wen Zheng

01:11

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 4

Indeterminate Forms and l'Hospital's Rule

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

01:47

Some populations initally …

03:56

It can be shown that solut…

01:52

Populations grow exponenti…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

Yeah. For this problem here, uh we have key approaching infinity in the logistic equation. So we have em over one plus E to the negative Katie. When t goes to infinity, this thing goes to zero, meaning the numerator goes to one. And then we're just left with Emma's results. And then for part B we have um to calculate it differently. M is going to infinity now. So we're going to treat the variable. We're gonna treat amazon a variable. However, when we send it to infinity, we get the indeterminant form. So we have to use local cows role, but we get it into this form right here. Uh, peanut class mm am minus P not I M E to the negative Katie. So when we evaluate this and we take the derivative, what we're left with is P not times E to the K T. As the final answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
162
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
70
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

01:47

Some populations initally grow exponentially but eventually level off. Equatio…

03:56

It can be shown that solutions of the logistic equation have the form $p(t)=\fr…

01:52

Populations grow exponentially when __________. a. population size expands by e…
Additional Mathematics Questions

02:22

'20. Consider the following algorithm, which takes an input integer n22…

04:06

'Use an appropriate Taylor polynomia about and the Lagrange Remainder F…

03:37

'The first step in this process is to determine if professional develop…

03:43

'Exercise 35.8. Assume that X has a Normal distribution with a mean of …

01:14

'Exercise 4.1L.22 You are doing experiments and have obtained the order…

03:28

"9. (15) The annual rainfall in Cincinnati is normally distributed with…

04:00

'Name the quadrant in which the angle 0 lies_ sin 0 > 0, sec 0
Th…

03:26

'If the random variable X has a normal distribution with mean 40 and st…

02:55

"The Educational Testing Service conducted a study to investigate diffe…

00:29

"Use Dijkstra's algorithm to find the shortest path from a to z fo…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started