Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

ssm The mass of a robot is 5450 $\mathrm{kg}$ . This robot weighs 3620 $\mathrm{N}$ more $\mathrm{e}$ e on planet $\mathrm{A}$ than it does on planet $\mathrm{B}$ . Both planets have the same radius of $1.33 \times 10^{7} \mathrm{m}$ . What is the difference $M_{\mathrm{A}} M_{\mathrm{B}}$ in the masses of these planets?

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

$1.76 \times 10^{24} \mathrm{kg}$

Physics 101 Mechanics

Chapter 4

Forces and Newton’s Laws of Motion

Newton's Laws of Motion

Applying Newton's Laws

Cornell University

University of Washington

Hope College

Lectures

03:28

Newton's Laws of Motion are three physical laws that, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows: In his 1687 "Philosophiæ Naturalis Principia Mathematica" ("Mathematical Principles of Natural Philosophy"), Isaac Newton set out three laws of motion. The first law defines the force F, the second law defines the mass m, and the third law defines the acceleration a. The first law states that if the net force acting upon a body is zero, its velocity will not change; the second law states that the acceleration of a body is proportional to the net force acting upon it, and the third law states that for every action there is an equal and opposite reaction.

03:43

In physics, dynamics is the branch of physics concerned with the study of forces and their effect on matter, commonly in the context of motion. In everyday usage, "dynamics" usually refers to a set of laws that describe the motion of bodies under the action of a system of forces. The motion of a body is described by its position and its velocity as the time value varies. The science of dynamics can be subdivided into, Dynamics of a rigid body, which deals with the motion of a rigid body in the frame of reference where it is considered to be a rigid body. Dynamics of a continuum, which deals with the motion of a continuous system, in the frame of reference where the system is considered to be a continuum.

02:30

The mass of a robot is $54…

03:00

The mass of a robot is 545…

01:47

A robot probe lands on a n…

01:02

On a planet whose radius i…

00:58

Planet A has a mass that i…

01:09

A body on the surface of a…

02:09

The weight of an object is…

04:11

02:12

(I) At the surface of a ce…

03:27

Mars has a mass of $6.46 \…

in this question, you have to calculate the difference in the masters of planets and and be so be more specific we have to complete one is m A minus MB. So how can he do that? Even this information that we have. So we begin by trying to relate the weight with the mass off the planet. So what is the relation between weight and the mass? Off the planet there is producing the gravity. So remember, that's the weight force is equal to the mass off the object times the acceleration of gravity in the surface off some planet. Now remember that the acceleration of gravity in the surface of a planet is given by the following equation. It's a goes to the Newtown constant times the mass off the planet, divided by the radios off the planet squared. Then we can write the weight force as follows, so the weight force can then be returned. SG times, M times the mass off the planet divided by the radius of the planet squared. This is the well known equation for the gravitational force. But now we will apply these equation using these information. How can you do that? Well, what is the weight off that robot in Planet A? Well, W A is equals to the Newtown Constant. It doesn't change times the mass off the robot times the mass off planet A divided by the radios off Burnett Day. And what is the weight off the rope? What in planet be? Well, very, very similar to the weight on Planet A. But we only have to change the A's by beast so they wait on Planet B is because to Newton, constant times demands off the robot times the mass off planet be divided by the radios off Planet B squared for at this squared here. Then what do we do? We used these equations, so w a g times the mass off the rowboat times the mass of planet B divided by the radios off in it. A squared is ecos too. The value B which is given by the Newton constant times The mass off the robot times the mass off planet me divided by the radios off planet me squared plus 36. 20. No, What we want to couple it is this quantity I m a minus and beat. How can we get this quantity. We have to send this term to the other side of this equation to get the following deep times m r Divided by r A squared times m A minus G times M r times and beef divided by R. V. Squared is he goes to 36 20. And now what now we factor out g m r divided by r squared white Can you do that? Because the radios have planted a easy cause to the radios off limits me so we can factor out these three quantities. So we get the following g m r. Divided by R A, which is equal to R V squared times. I m a minus and be Is it close to 36. 20. Now let me clear the board so I can continue to serve in this equation. Now, we already have the quantity m eight minutes and be right here. So all we have to do is send this term to the other side dividing to get em a minus, and meat is equals to 36 20. Divided by G fines. M r. Divided by r. A. It's weird, and this we can simplify to get the following these Mexico's to 36 20 times are a squared, divided by g times m r. Remember that G The Newton constant is a close to 6.6 to 7 times stand minus 11 new terms meters squared, kilograms squared, then my plague in the vials that were given by the problem. We have the following an A minus and B is equal to 36 20 fines, 1.33 times Stand to the seven squared, divided by 6.6 to 7 times Stan to minus 11 times 54 50 and this is approximately 1.76 times stand to 24 kilograms.

View More Answers From This Book

Find Another Textbook

Numerade Educator

University of Winnipeg

McMaster University