Enroll in one of our FREE online STEM summer camps. Space is limited so join now!View Summer Courses

Need more help? Fill out this quick form to get professional live tutoring.

Get live tutoring
Problem 81

Suppose $f$ and $g$ are non-constant, differentiable, real- valued functions defined on $(-\infty, \infty) .$ Furthermore, suppose that for each pair of real numbers $x$ and $y$

$f(x+y)=f(x) f(y)-g(x) g(y)$ and
$g(x+y)=f(x) g(y)+g(x) f(y)$

If $$f^{\prime}(0)=0,$ prove that $(f(x))^{2}+(g(x))^{2}=1$ for all $x$$

Answer

Proof inside



Discussion

You must be signed in to discuss.

Video Transcript

No transcript available

Recommended Questions

You're viewing a similar answer. To request the exact answer, fill out the form below:

Our educator team will work on creating an answer for you in the next 6 hours.