Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

For each of the numbers $ a $, $ b $, $ c $, $ d …

09:26

Question

Answered step-by-step

Problem 2 Easy Difficulty

Suppose $ f $ is a continuous function defined on a closed interval $ [a, b] $.

(a) What theorem guarantees the existence of an absolute maximum value and an absolute minimum value for $ f $?
(b) What steps would you take to find those maximum and minimum values?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Oswaldo Jiménez
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Oswaldo Jiménez

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:24

Fahad Paryani

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 1

Maximum and Minimum Values

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

00:37

Suppose $f$ is a continuou…

01:41

if a function f is continu…

03:55

Suppose f is a continuous …

01:38

If $f$ is defined on the c…

01:11

Put It Together If a funct…

01:16

Give an example of a conti…

02:13

Prove that if $f$ is conti…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80

Video Transcript

let F be a continuous function defined on a closed interval A B parquet. We talk about what theorem guarantees the existence of an absolute maximum value and and an absolute minimum value for F. In part B. We talk about what steps are necessary to find those extreme values of the function. So in part A we are we are talking about the extreme value theory which we have here and that theory mistakes that if a function F is continuous on a closed interval baby, then F attains an absolute maximum value F. Of C. And an absolute minimum value F. F. D. At some point. And some numbers see in the in the interval A. B. So this is your guarantee guaranteeing us the function attains it's extreme valleys on a close interval and the function gotta be continued to that purple. We talk about the steps needed to find those C and D. For which the images are correspondingly the absolute maximum value and the absolute minimum body of the function. That's what we call the close interval method. And under the assumptions of the extreme value theory and there is a function is continuous and close interval. What we do first step one is find the values of F at the critical numbers of F in the interval A be open interval that is We find the first derivative of F and all the values in dangerous. A. B open interest that is excluding the the end points for which derivative doesn't exist or Is equal to zero. All those minds got to be considered. Step wonder is we get to the way the function at those critical numbers that are within the interval. Ape The step two is find the values of the function at the end points of the interval that is calculates f f a n f f B. The images of the importance and step three is find or to the largest value of the value calculated in steps one of them to the largest value what or better. The larger of the values noticed of the values from steps one and two. The largest of those values is the absolute maximum value of F. Only closing to vote baby and the smallest of tom's valleys is the absolute minimum value function on your clothes in general. So will you call we make a summary under the hypothesis of the extreme value theory. There is a function is continuous on a closed interval A B Step one, we find the values of the function at the critical numbers of f years of F. That's very currently of death. We find the critical numbers of F in the Interpol the way that is the values in that interval for which the relative doesn't exist or is equal to zero. So we got to calculate the first derivative and solve the equation after every difficulty and inspect whether the derivative is not defined. And so at some points inside the that all those points that that is all the critical numbers of Fn Maybe we got to have a function there In step two. Either way to function at the end points of the Internet, that is. We find the values F. Of A and F. B. And then we issued the largest of the values calculated in steps one and two. And that the absolute maximum value of the function over interval maybe which is the smallest of the values calculated in steps one and two. And that's the absolute minimum value, the function over the close interval. So these are the steps we got to follow each time we want to find the extreme violence of the continuous function on the claws into. Mhm.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

00:37

Suppose $f$ is a continuous function defined on a closed interval $[a, b] .$ …

01:41

if a function f is continuous on a closed interval [a,b], then what are we assu…

03:55

Suppose f is a continuous function defined on a closed interval [1, 3]. (a) Is …

01:38

If $f$ is defined on the closed interval $[a, b]$, then $f$ has an absolute min…

01:11

Put It Together If a function $f$ is continuous on the closed interval $[a, b]$…

01:16

Give an example of a continuous function, defined on a closed interval $[a, b],…

02:13

Prove that if $f$ is continuous and $f(a)$ and $f(b)$ are local minima where $a…
Additional Mathematics Questions

01:26

Which will give the higher dividend: 500 shares at Php0.875 per share annual…

01:03

If your score on your next statistics test is converted to a z score, which …

01:10

A successful basketball player has a height of 6 feet 7 inches, or 201 cm. B…

01:18

Denise's rabbit can eat 70 kilos of food in 80 days. How long will it t…

01:45

Assume that X={F,A,D,G}X={F,A,D,G} and Y={6,5,1,7,4,3}Y={6,5,1,7,4,3}. A cod…

02:00

explain how can compare the range in this case using the box-and-whisker plo…

01:53

How many conversion periods are there for an amount of 1000 compounded quart…

01:38

In Tasheena's Anthropology class Quizzes are worth 15% of the final gra…

01:05

You buy a milkshake from a shoppe that only has chocolate, vanilla, and stra…

02:03

15) Liam baked some cookies. 7/8 of them were almond cookies and the rest we…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started