Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
Suppose $ f $ is a continuous positive decreasing function for $ x \ge 1 $ and $ a_n = f(n). $ By drawing a picture, rank the following three quantities in increasing order.
$ \int^6_1 f(x) dx \displaystyle \sum_{i = 1}^{5} a_i \displaystyle \sum_{i = 2}^6 a_i $
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Clayton Craig
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
Calculus 2 / BC
Chapter 11
Infinite Sequences and Series
Section 3
The Integral Test and Estimates of Sums
Sequences
Series
Oregon State University
Harvey Mudd College
University of Nottingham
Lectures
01:59
In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.
02:28
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.
03:39
Suppose $f$ is a continuou…
01:31
Using a Function Let $f$ b…
01:45
1. [2 points] Suppose f is…
Suppose that $f$ is contin…
02:31
Suppose $f(x)$ is positive…
for the sake of demonstration we'LL just use this generic looking, continuous positive, decreasing function. The integral is thie entire area underneath the curve from one to six. In this case, we'Ll do that last this first Siri's, however, look something like this, rectangles of with one to make sure we have the whole valley of the height and the heights determined by the right side and points on the function. So for that first Siri's, which is from one to five, I mean over something looks roughly like this. For the last Siri's, however, we started to an end at six, and we can already see starting at two and ending at six. That the two Siri's are nearly identical, the primary difference being that the first Siri's has this large rectangle here in the last. Siri's instead has a much smaller rectangle over here s so we can conclude that the first serious is larger than the third. Siri's now when we need to do is think about how the integral compares Now the integral is only going from one, two six and again is going to be very much the same as the Siri's. In this case, it looks to be identical almost to the second Siri's. However, with this extra area up top, we can see that the area above the rectangles is not quite large enough to add up to the significant area of that first green rectangle, which includes area before these starting bound of are integral. So putting them in order from lowest toe largest, it would have the Siri's from two to six, then the Siri's from one Ah, my apologies, the integral from one to six and finally Siri's from one to five.
View More Answers From This Book
Find Another Textbook