Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Question

Answered step-by-step

Problem 48 Hard Difficulty

Suppose you make napkin rings by drilling holes with different diameters through two wooden balls (which also have different diameters). You discover that both napkin rings have the same height $ h $, as shown in the figure.
(a) Guess which ring has more wood in it.
(b) Check your guess: Use cylindrical shells to compute the volume of a napkin ring created by drilling a hole with radius $ r $ through the center of a sphere of radius $ R $ and express the answer in terms of $ h $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Carson Merrill
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Carson Merrill

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

05:41

WZ

Wen Zheng

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 3

Volumes by Cylindrical Shells

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

02:47

Suppose you make napkin ri…

08:25

Suppose you make napkin ri…

04:21

(a) A cylindrical drill wi…

0:00

Inscribing a Cylinder in a…

04:43

Volumes of Solids The sphe…

01:01

Find the height, $h,$ and …

01:06

Mark carves napkin rings o…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48

Video Transcript

first problem, we would guess that the smaller ring has more wood. Um, since it is all closer together, uh, the bigger one is more spread out with more would that was drilled away. So on the other hand, if we were able to squeeze the bigger ring together to make it closer to the size of the smaller one, it would appear to be about the same. Um, so it does appear to be about the same. And then for part B, what we want to do is check our guests. So we're gonna use the cylindrical shell method. We have our circle right here, and then we have our This is the origin and we have a radius right here of big are and then a smaller radius of little are. Then we want to get the height of each cylindrical shell and and multiplied by two. So we get that X squared, plus y squared equals R squared solving for wine. We get that y equals the square root. And this is the height right here at the height. Mhm, um y equals the square root of R squared minus X squared so that our volume is going to equal to pipe of the integral from our to our of the shell radius times the shell height, DX So what that's gonna look like is the shell radius of X and the show height, which is gonna be two times the y value. So two times the square root of R squared minus x squared dx. When we integrate this, we end up getting that are volume is going to be four thirds pi Our big R squared minus little r squared to the three house power. Um Then what we see is that this r squared minus r squared we've seen before because this is the same thing as a church squared, Um, so we can replace that with h squared. Thus, in doing so, we would, um, looking at each squared we have r squared plus h squared over four equals big R squared so R squared minus big R squared minus r squared. If we bring this over, is gonna end up giving us I'm eight spread over four and then we multiply by four to get each squared. So looking at that, we see that we can rewrite this as V equals four thirds pi of H squared over four to the three house. And this simplifies to be 16 Hi, h cute.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
162
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
70
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Michael Jacobsen

Idaho State University

Recommended Videos

02:47

Suppose you make napkin rings by drilling holes with different diameters throug…

08:25

Suppose you make napkin rings by drilling holes with dif- ferent diameters thr…

04:21

(a) A cylindrical drill with radius $ r_1 $ is used to bore a hole through the …

0:00

Inscribing a Cylinder in a Sphere Inscribe a right circular cylinder of height …

04:43

Volumes of Solids The sphere, cylinder, and cone shown here all have the same r…

01:01

Find the height, $h,$ and the base radius, $r,$ of the largest right circular c…

01:06

Mark carves napkin rings out of wooden spheres. His napkin rings have height $h…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started