Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Test the series for convergence or divergence. …

02:46

Question

Answered step-by-step

Problem 15 Easy Difficulty

Test the series for convergence or divergence.

$ \displaystyle \sum_{k = 1}^{\infty} \frac {2^{k-1} 3^{k+1}}{k^k} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 7

Strategy for Testing Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

01:34

Test the series for conver…

0:00

Test the series for conver…

01:13

Test the series for conver…

01:20

Test the series for conver…

01:51

Test the series for conver…

01:28

Test the series for conver…

0:00

Test the series for conver…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38

Video Transcript

for this problem we'LL try using the root test for a lot of problems. You can get away with using, uh, different techniques to figure it out. The ratio test, for example, would also lead you to the answer here. But we'll do a problem. Ah, using the retest. So the root tests we take this thing and then we look at the K through and then similar to the ratio test. What we would like to happen would be for this to be less than one. Okay. And then this should be it one okay. And then similar to the ratio test, it's important that the stuff in here is positive. If it wasn't, then we would just, you know, put the absolute value signs around there. So we're looking at the absolute value of the terms in consideration, and we're taking the K through and limit is kay goes to infinity. Okay, so this thing, the exponents well, distribute over these guys. So this is going toe Simplify some. You will have to. That k over K is one in minus one. Over. Kay. Sorry. That's should be a k. And then similarly here we have k over kay, which is one and that we have plus one over Kay Cannon Down at the bottom, we have ke the k to the one over cape hours That's going to make a to the k o ver que So that's just k to the one. Okay, but the limit conduce skin.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
84
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
53
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

01:34

Test the series for convergence or divergence. $\sum_{i=1}^{\infty} \frac{2^{…

0:00

Test the series for convergence or divergence. $ \displaystyle \sum_{k = 1}^…

01:13

Test the series for convergence or divergence. $$\sum_{k=1}^{\infty} k^{2} e^{…

01:20

Test the series for convergence or divergence. $$\sum_{k=1}^{\infty} \frac{2^{…

01:51

Test the series for convergence or divergence. $ \displaystyle \sum_{k = 1}^…

01:28

Test the series for convergence or divergence. $\sum_{i=1}^{\infty} \frac{1}{k…

0:00

Test the series for convergence or divergence. $ \displaystyle \sum_{k= 1}^{…
Additional Mathematics Questions

04:40

10. (13 points) A recent study of 100 people in Miami found 27 were obese (a…

02:00

Fast computer: Two microprocessors are compared sample of 6 benchmark codes …

01:22

Let x be a random variable that represents the hemoglobin count (HC) in huma…

02:54

09. (10 points) grading scale up for 1000 students' test scores It is a…

02:39

Question FInd the median of the following set of miles per gallon for random…

02:04

Use graphing calculator to approximate the open intervals where the function…

04:41

Question 2 (1 point)
The population of bacteria in petri dish is given by…

00:54

14_ Show work. Solve logz(x) _ logz(x - 6) = 4

01:18

An international airport in the UK lets You exchange different types of curr…

00:53

15) [2,2] Solve for * Box your answer_ a) logb (x-1)=c
Ae' =9

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started