Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the area of the region bounded by the parabo…

14:16

Question

Answered step-by-step

Problem 55 Easy Difficulty

The curve with equation $ y^2 = x^2 (x + 3) $ is called Tschirnhausen's cubic. If you graph this curve you will see that part of the curve forms a loop. Find the area enclosed by the loop.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Madi Sousa
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Madi Sousa

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 6

Applications of Integration

Section 1

Areas Between Curves

Related Topics

Applications of Integration

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 2 / BC Courses

Lectures

Join Course
Recommended Videos

03:05

The curve with equation $y…

00:33

Find the area of the regio…

04:05

Compute the total area of …

05:57

Find the area of the loop …

04:24

Find the area of the loop …

01:02

Find the area of the loop …

02:09

Find the area bounded by t…

01:12

The curve $$\left(x^{2}+y^…

Watch More Solved Questions in Chapter 6

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

in this problem, we have to use integration, define the area under a curve. And so we have got to talk about how we do that for the function that were given. We're given. Our function is why squared equals X squared Times X plus three. So we can simplify that a little bit and say that why is equivalent to plus or minus the square root of X square Times X plus three. So when we graft that this is a very rough drawing. But this is what the graph would mostly look like. We have an intersection at 00 and if you drew this better than I did, you would see that this is symmetric and so we can do a little bit more simplification with our function. We can say that why equals the absolute value of X Times Square root of X plus three. But working with absolute values and intervals is a little bit more challenging than what we need here. So we can say when X is less than zero. Why equals negative X time to square root of X plus three And now remember when we look at this graph, or maybe you put it into a graphing, um, utility to look make it look better than my drawing you find in its symmetric. So what you could basically do. I find the area of the top portion or the bottom portion off our function and multiply it by two. And that's what we're going to do. We'll gather. The area is equivalent to two times the integral of negative 3 to 0 of negative X times the square root of X plus three with respect to X. So now we can do some U substitution. We can say let you be X plus three. So U minus three is equal to X and d use equal to D X, and now we can change. The limits of integration are a value which was negative. Three. We can add three and we'll get zero for a B value. Well, we had zero before. We'll add three and we'll get three. So our new integral now using new substitution will look like this. Are area will be equivalent to negative two times the integral from 0 to 3 of U minus three times the square root of you in do you and now we can simplify that and say that our area equals negative. Two times the integral from 0 to 3 of you raised the three halves minus three times you raise to the half power and do you? So now we can take the anti derivatives will get negative two times two or five. You raised a five over to minus three times. Pardon me, That should know. Sorry to Over three. You raised a three over to when will evaluate this from 0 to 3. Sorry for the confusion. I just cause they're hopefully it becomes clear in this next step. So now we'll basically plug in. Our limits of integration will get negative two times. Two over. Five times three raised to four over. Two times three raised to one half, minus two times three raised to two over. Two times three. Race to the one half. Now I know that these could be simplified, which we're going to do when we simplify. This whole expression will get negative two times 2/5 times nine times a spirit of three minus two times three squared of three. Now we can put all of this in a common denominator and we'll get negative 36 plus 60/5 times square root of three. And finally, what gets the area of our curve is 24/5 times the square root of three. So I hope that this shows you how we can use integration to find the area under a curve. Specifically, we looked at a symmetric function and how we can go through those steps to find the area using you substitution as well.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Applications of Integration

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Recommended Videos

03:05

The curve with equation $y^{2}=x^{2}(x+3)$ is called Tschirnhausen's cubic. If …

00:33

Find the area of the region inside the loop'in the graph of the curve $y^{2}=x^…

04:05

Compute the total area of the loop of the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x…

05:57

Find the area of the loop of the curve $y^{2}(2 a-x)=x(x-a)^{2}$.

04:24

Find the area of the loop of the curve $y^{2}=x^{4}(4+x)$.

01:02

Find the area of the loop of the curve $y^{2}=x^{4}(4+x)$ -

02:09

Find the area bounded by the loop of the curve with parametric equations $x=t^{…

01:12

The curve $$\left(x^{2}+y^{2}\right)^{2}=a x^{2} y, \quad a>0$$ is called a bif…
Additional Mathematics Questions

00:51

Weight of 6 books is 7.2kg find the weight of 3 books

02:16

Which of the following represents all possible values of M that are solution…

03:05

Find the square root of 2401 by division method

00:47

Find the Selling Price if Cost Price is ₹500 and Loss = ₹60

02:09

The time it takes a cell to divide is normally distributed with an average t…

02:54

The number of faces in a right prism that has 16 vertices is

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started