Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The displacement (in feet) of a particle moving i…

17:11

Question

Answered step-by-step

Problem 15 Medium Difficulty

The displacement (in meters) of a particle moving in a straight line is given by the equation of motion
$ s = 1/t^2 $, where $ t $ is measured in seconds. Find the velocity of the particle at times $ t = a $, $ t = 1 $, $ t = 2 $, and $ t = 3 $.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Ma. Theresa Alin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Ma. Theresa Alin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:40

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 7

Derivatives and Rates of Change

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

The displacement (in meter…

04:12

The displacement (in meter…

03:37

A particle moves in a stra…

04:19

A particle moves in a stra…

07:49

A particle moves in a stra…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

suppose the position of a particle at time T is defined by the function S of T, which is equal to one over t squared. And here we want to find the velocity at time T, which is equal to a 1, 2 and three to do this, we find the derivative of S at a point T, which is equal to a. Now by definition of the derivative at the point we have s prime of a. This is equal to limit as T approaches A. Of S F T minus S. Of a fish all over t minus A. So from here we have limits. S T approaches A. Of S F T, which is one over T squared. This minus S of a. Which is one over a squared all over t minus A. Now combining the numerator, we have limit S. T approaches A. Of we have a common denominator of a square T squared and then we have a squared minus d squared. This times the reciprocal of t minus A, which is one over t minus A. And then from here we get limit. SD approaches a. We can factor out a squared minus d squared into a minus t, times a plus t. This all over a square times t squared and then times the reciprocal of t minus A, which is one over t minus E. And then know that the a minus T. We can rewrite this into negative of t minus A. And so we can cancel this along with the T -8 in the Denominator. And so we have limit as T approaches a of the negative of a plus T over a square times T squared. And so evaluating at T. Which is equal to a. We have negative of a plus A All over a square times a square. Distrust negative to a All over 8 to the fourth power, or this is just negative 2/8 to the third power. And so this is the velocity of the particle at time T. Which is a. Now we will use this to find the velocity At Times 1, 2 and three. So if the velocity which is just S prime of E. is -2 over a cube, this is the velocity at time equals A. Then when T. Is that's a one, we have s prime of one, this is just negative two over 1 to the third power or negative two. And when he is too we have S. Prime of two, which is just negative too, Over 2 to the 3rd power, That's negative to over eight or -1/4. And when these three we have s prime of three, That's equal to negative two over 3 to the 3rd power. Or that's just negative two over 27. So these are the velocities at specific times T, Which is 1, 2 and three

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

The displacement (in meters) of a particle moving in a straight line is given b…

04:12

The displacement (in meters) of a particle moving in a straight line is given b…

03:37

A particle moves in a straight line with the given velocity (in meters per seco…

04:19

A particle moves in a straight line with the given velocity (in meters per seco…

07:49

A particle moves in a straight line with the given velocity (in $\mathrm{m} / \…
Additional Mathematics Questions

01:00

how do represent the distance below and above the sea level

01:42

what is the procedure (step by step) in making a house

01:22

Ninas math classroom is 6 4/5 long and 1 3/8 meters wide. What is the area o…

01:19

What is the value of the discriminant whose roots are real, rational, and eq…

01:29

1. Which term of the arithmetic sequence 5, 9, 13, 17, ... is 409?a. 99th te…

01:35

The square of a number equals nine times that number find the number

00:42

A convenience store made a survey on the beverage customers buy twenty out o…

00:37

Suppose the population of a certain bacteria in a laboratory sample is 100. …

02:19

Directions: Solve the following quadratic equations by extracting square roo…

01:35

Junior put 10 pesos in his piggy bank yesterday, May 30,2014 of he is planni…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started