Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

The drawing shows a wire tooth brace used by orthodontists. The topmost tooth is protruding slightly, and the tension in the wire exerts two forces $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{T}}^{\prime}$ on this tooth in order to bring it back into alignment. If the forces have the same magnitude of $21.0 \mathrm{N},$ what is the magnitude of the net force exerted on the tooth by these forces?

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

11.6 $\mathrm{N}$

Physics 101 Mechanics

Chapter 4

Forces and Newton’s Laws of Motion

Newton's Laws of Motion

Applying Newton's Laws

University of Michigan - Ann Arbor

University of Washington

Hope College

McMaster University

Lectures

03:28

Newton's Laws of Motion are three physical laws that, laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to those forces. These three laws have been expressed in several ways, over nearly three centuries, and can be summarised as follows: In his 1687 "Philosophiæ Naturalis Principia Mathematica" ("Mathematical Principles of Natural Philosophy"), Isaac Newton set out three laws of motion. The first law defines the force F, the second law defines the mass m, and the third law defines the acceleration a. The first law states that if the net force acting upon a body is zero, its velocity will not change; the second law states that the acceleration of a body is proportional to the net force acting upon it, and the third law states that for every action there is an equal and opposite reaction.

03:43

In physics, dynamics is the branch of physics concerned with the study of forces and their effect on matter, commonly in the context of motion. In everyday usage, "dynamics" usually refers to a set of laws that describe the motion of bodies under the action of a system of forces. The motion of a body is described by its position and its velocity as the time value varies. The science of dynamics can be subdivided into, Dynamics of a rigid body, which deals with the motion of a rigid body in the frame of reference where it is considered to be a rigid body. Dynamics of a continuum, which deals with the motion of a continuous system, in the frame of reference where the system is considered to be a continuum.

02:17

The drawing shows a wire t…

01:30

0:00

01:16

The drawing shows wire too…

01:34

The drawing shows a wire a…

01:38

A certain orthodontist use…

06:15

The drawing shows an elast…

02:50

What force is exerted on t…

06:02

What force is exerted on …

03:23

$\bullet$ Chin brace. A pe…

03:12

A steel band exerts a hori…

in this question, we have to calculate what is the magnitude off the resulting force? Well, for that, we begin by calculating the components off the resulting force. So each off these forces T and T Prime can be the composer in two components. One component that goes like this and another component that goes like this as the two forces. Our makes the same angle with the horizontal on have the same magnitudes. This The magnitude of this component is ego to the magnitude of this component, and the magnitude off both vertical components are equals. True to calculate the magnitude after its components, we can use direct and will triangle like that one. So here is 21 Newton's. Here is the X component off the prime on here is the Y component off the prime, and here is an angle off 16 degrees. Then, with that, we can calculate the X by using the co sign off 16 degrees because they go sign off. 16 degrees is equals to the address inside off the triangle, So T Prime X, divided by the high point in his 21. Therefore, T Prime X is close to 21 times they call Sign off 16 degrees. Now for the Y component. We have a following this sign off 16 degrees easy course to the opposite side, so t prime Why divided by the high Potter News which is 21 then t prime Why is he goes to 21 times this sign off 16 degrees? And this is also true for the components off the tee force. So we have to following Deasy's ah 21 times this sign off 16 degrees. These is also 21 times their sign off 16 degrees. These pointing to the left is equals to 21 times the co sign off 16 degrees and this is also doing 21 times they call sign off 16 degrees. Note that here on the horizontal axis, we have two forces off equal magnitude pointing in opposite directions. Therefore, they come so each order So this force cancel these force as a crossing points in the resulting force is a vertical force with a magnitude that is given by true times 21 times This sign off 16 degrees Therefore the magnitude off the resulting force Let me call it our is the close to two times 21 times this sign off 16 degrees, and this is approximately 11.6 neutrons, so these is the resulting force that acts on the tooth.

View More Answers From This Book

Find Another Textbook

02:20

Question 3 of 3120View Policies Current Attempt in Progress Aship is…

08:14

A sinusoidal wave on a string is described by the equation: Y = 0.1…

04:10

Assume that the Full-Load Speed of a 4-Pole Induction Motor is 1650…