Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The intensity of light with wavelength $\lambda$ …

07:23

Question

Answered step-by-step

Problem 42 Hard Difficulty

The figure shows a pendulum with length $ L $ that makes a maximum angle $ \theta_0 $ with the vertical. Using Newton's Second Law, it can be shown that the period $ T $ (the time for one complete swing) is given by
$$ T = 4 \sqrt{\frac{L}{g}} \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}} $$
where $ k = \sin \left (\frac{1}{2} \theta_0 \right) $ and $ g $ is the acceleration due to gravity. If $ L = 1 m $ and $ \theta_0 = 42^\circ $, use Simpson's Rule with $ n = 10 $ to find the period.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Foster Wisusik
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Foster Wisusik

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 7

Approximate Integration

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:51

The figure shows a pendulu…

13:12

The figure shows a pendulu…

12:10

The figure shows pendulum …

09:14

Period of a pendulum A sta…

00:54

Period of a pendulum A sta…

09:58

Consider a pendulum of len…

04:19

The figure shows a pendulu…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50

Video Transcript

Okay, so this question wants us to approximate the period of a pendulum using this expression So T is equal to four times a squared about all over g times this elliptic integral. So to evaluate this, it wants us to use Simpson's rule with an equal to 10. But first we consult for some constants to make things simpler later. So it says that l is one meter and we know that G is 9.81 times are integral from zero to pi over too of DX over square root of one minus well, k equals sign of 42 over two degrees, which equals 0.358 four. So weaken sub that in for our value of K to get are integral. So t equals four times the square root of one over 9.1 times the integral from zero pi over too, goes Well, let's just call this nasty expression f of X. So only have to do is approximate this integral now. So to do this, it wants us to take an equal to attend. So Delta X is well, we end at pi over to when we started zero and we want 10 sub intervals. So Delta X equals pi over 20. So s a 10 equals pi over 20 divided by three. So pie over 60 times f of zero plus four times af of our first value pirate 20 plus two times f of two pi over 20 plus f of 10 pie over 20. What you'll notice is pi over too. And then we also know that l equals four times squared of one over 9.81 times s a 10 earliest. That's our approximation. So if we plug in these values for our function because remember we defined f of X earlier Here is this expression. So now we can just plug this in using our calculator and see that l is approximately equal to two points. 65 We're sorry. This should be t t should be 2.65 seconds

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

05:51

The figure shows a pendulum with length $L$ that makes a maximum angle $\theta…

13:12

The figure shows a pendulum with length $L$ that makes a maximum angle $\theta…

12:10

The figure shows pendulum with length that makes maximum angle 80 with the vert…

09:14

Period of a pendulum A standard pendulum of length $L$ swing ing under only the…

00:54

Period of a pendulum A standard pendulum of length $L$ that swings under the in…

09:58

Consider a pendulum of length $L$ meters swinging only under the influence of g…

04:19

The figure shows a pendulum with length $L$ and the angle $\theta$ from the ve…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started