Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The function $ A $ defined by $ A (x) = 1 + \fr…

02:51

Question

Answered step-by-step

Problem 35 Hard Difficulty

The function $ J_1 $ defined by
$ J_1(x) = \sum_{n = 0}^{\infty} \frac {(-1)^n x^{2n + 1}}{n! (n + 1)! 2^{2n + 1}} $
is called the Bessel function of order 1.
(a) Find its domain.
(b) Graph the first several partial sums on a common screen.
(c) If your CAS has built-in Bessel Functions, graph $ J_1 $ on the same screen as the partial sums in part (b) and observe how the partial sums approximate $ J_1. $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

04:42

The function $J_{1}$ defin…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42

Video Transcript

we use the ratio test here, so limit as n goes to infinity of absolute value of a in plus one over a N for this whole thing here is our A M value and we want for this to be less than one. This is limit as n goes to infinity of absolute value of X to the two times in plus one plus one over in plus one factorial times 10 plus two factorial times two to the two n plus one plus one and then notice that we didn't do anything with this minus one to the end. And that's because of the absolute value signs absolute value. It doesn't matter whether or not and it is positive or negative hopes. And this should be it should be a plus one there. Okay, so this is a n plus one, except for the minus one to the end, isn't there? And now we're dividing by a n So we're multiplying by the reciprocal of a M. So we'll have an infect. Oh, real top. We'll have an n plus one factorial up top as well, and we'll have a two times two to the end plus one up top. Okay, so whoops. And then we also have this next to the two n plus one down here. All right, so if we expand this, this is too in plus two plus one. So two n plus one will cancel out with this two n plus one. So these powers of X are just going to simplify the X squared in factorial divided by N plus one factorial is going to simplify the one over n plus one in plus one factorial divided by in plus two factorial is one over n plus two, two n plus one plus one. This is the same thing as to one plus two plus one, 21 plus one is going to cancel it with this two n plus one. So then we're just going to have to to the to and the denominator. So it doesn't matter what X is. As n goes to infinity, this is going to go to zero, which is less than one. So we get convergence regardless of what X is. So the domain is everything minus infinity to infinity. So if we look at the somewhere we have, let's see s one of X So this is this guy when we plug in an equal zero plus this guy, when we plug in n equals one and if you graph it, you know, you get something kind of squiggly. This should be passing through. The origin is something kind of squiggly like this Here, this is somewhere around three. This is somewhere around 0.6. Okay, so that's, you know, that'd be the second partial sum you took. You could also have the partial somewhere. You're just looking at the value you get when it is equal to zero and, uh, the whole function from in equal 02 Infinity is gonna look kind of like this, except it's going to be more squiggly. Okay, so it's still going to have this type of thing happening. Except now we have more squiggles. So in both directions and again, this value is going to be some were pretty close to three and appear this is somewhere pretty close to 0.6. So you'll see that the partial sums do start to look like the function that we're evaluating. And the more partial sums that you do, the more squiggly it's going to get, and then eventually it's going to turn out to be this really squiggly thing here

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

04:42

The function $J_{1}$ defined by $$J_{1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x…
Additional Mathematics Questions

01:01

Which of the following about the binomial distribution is NOT a
true stat…

04:51

The times per week a student uses a lab computer are normally
distributed…

01:02

Given the class limits below, what is the class width?
1-5, 6-10, 11-15, …

02:14

1. The general form of a sine or cosine graph appears as
follows:
f (x…

04:50

The city of Tucson, Arizona, employs people to assess the value
of homes …

02:14

A charter flight charges a fare of $300 per person plus
$4545per person f…

01:49

Find the standard deviation for the given sample data. Round your answer to …

05:41

Solve the differential eqaution with a method of substitution of
homogene…

03:22


{Exercise 4.45
(Algorithmic)}
In an article about
investment al…

04:32

Let X be normally distributed with
mean μ = 4.0 and standard
deviation…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started