Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Trace or copy the graph of the given function $ f…

06:01

Question

Answered step-by-step

Problem 7 Easy Difficulty

Trace or copy the graph of the given function $ f $. (Assume that the axes have equal scales.) Then use the method of Example 1 to sketch the graph of $ f' $ below it.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

DM
David Mccaslin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by David Mccaslin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

03:05

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 8

The Derivative as a Function

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

02:41

Trace or copy the graph of…

02:42

Trace or copy the graph of…

06:01

Trace or copy the graph of…

06:01

Trace or copy the graph of…

06:01

Trace or copy the graph of…

03:21

Trace or copy the graph of…

06:01

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

0:00

Trace or copy the graph of…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67

Video Transcript

So in this problem were given a graph of a function F. We were asked to trace or copy it. So, first of all, let's get our graph up here, there's X. Here's why. And our graph goes up to some maximum and then comes back down like this. Okay. They were asked to use the method of example 1 to sketch the graph of F. Prime. This is F F prime, blow it again. We'll have X and Y here. Okay. Yeah. The method says to pick points on here and look at the slopes at those points and use those to determine where we are on the derivative curve. We can see, first of all, if we do appoint a here that this tangent line, right is nearly vertical. So that means that we are at some very positive slope here. Okay. And then if we pick a point be right here on the top of the curve, that's a horizontal, that's a zero slope. So we know that he's going to be here. We know that A is up here somewhere for that value of X. Then we pick a grab a point over here, point C and look at that tangent line that's negative. Right? As this is a decreasing curve. And that's at the point where it's the steepest negative. And so that means we're going to have some point C down here happening to us, we are negative and we are the steepest negative and notice that this trends on toward zero. So this is C. Okay, so what happens? Well from here, I trend up towards zero from B to C. I got more and more negative like that, and from A to B. I came from very positive down to zero. And so there is my graph for the derivative of F.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

02:41

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

02:42

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

06:01

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

06:01

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

06:01

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

03:21

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

06:01

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…

0:00

Trace or copy the graph of the given function $ f $. (Assume that the axes have…
Additional Mathematics Questions

00:29

I am an odd number take away one letter and I become even what number I am

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started