Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Show that the ellipse $ x^2/a^2 + y^2/b^2 = 1 $ a…

06:46

Question

Answered step-by-step

Problem 68 Hard Difficulty

Two curves are orthogonal if their tangent lines are perpendicular at each point of intersection. Show that the given families of curves are orthogonal trajectories of each other; that is, every curve in one family is orthogonal to every curve in the other family. Sketch both families of curves on the same axes.
$ y = ax^3, x^2 + 3y^2 = b $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Chris Trentman
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Chris Trentman

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:26

Frank Lin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 5

Implicit Differentiation

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

07:12

Two curves are orthogonal …

10:57

Two curves are orthogonal …

08:29

Two curves are orthogonal …

00:38

Two curves are orthogonal …

04:18

Two curves are orthogonal …

08:24

Two curves are orthogonal …

09:09

Two curves are orthogonal …

01:05

Show that the given famili…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80

Video Transcript

we're told that two curves are orthogonal if their tangent lines are perpendicular at each point of intersection. Whereas to show that the given families of curves are orthogonal trajectories of each other, That is that every curve in one family's orthogonal to every curve in the other families. Then we have to sketch both families of curves in the same axes. Wow. Well our families of curves are Y equals X cubed. So these are translations or transformations of the cubic function where it's stretched vertically. And the other family of curves is x squared Plus three, Y is squared equals B. So these are ellipses centered at the origin which appear to have a horizontal major axis. I really don jr I'm brian. Well there's three steps here. First you want to differentiate the equation of the family of curves so the constant in the first equation gets eliminated, then we'll obtain a differential equation and finally we'll solve the differential equation we obtain. So you begin with our family of curves, Y equals a X cubed. Whoa, That's a good Richardson. Now I'll solve for our constant so that we get it on one side, I get y over X cubed equals a, wow, that sounds exactly. We want to find the derivative, the slope of these curves, but we want to find an independent of the constant. A. So taking the derivative with respect to X at both sides, we have the bottom X cubed times dy dx minus the top, Y times the derivative of the bottom three X squared all over the bottom X cube squared which is X to the sixth And the right hand side is simply zero. So now I've eliminated a this is good because now our slope is only going to depend on Y and X, solving for the dy dx we have x cubed, dy dx minus three, x squared y equals zero and therefore dy dx equals three Y over X. Now this is the slope of our first family of curves. We know that the slope of our second family of curves. Well, this has to be negative reciprocal. So this is going to be we want to substitute. No. Yeah uh negative dx dy for dy dx. So the tangent lines are perpendicular at the point of intersection. Therefore we get negative dx dy Equals three Y over X. This is a separable differential equation. We can write this as X D X equals negative three Y dy. So now I'll take the anti derivative of both sides. You're so we get X one half X squared equals negative three halves Y squared plus a constant, which I'll call. See it's pretty fair, I don't know what's the cool thing. I get X squared plus three Y squared is equal to to see if I set to C equal to the constant be right. Then the equation becomes X squared plus three Y squared equals B. We recognize these are the same as the family of equations we were given. Oh, therefore it follows that the given families of curves are orthogonal trajectories of each other. So we have verified this fact. Now I'm going to sketch both families of curves and the same axes has said before the first family of curves. These are transformations of the cubic with I guess you could say the vertex of the cubic at the origin and they're just stretched vertically or horizontally. We're really from. So for example if A was one, we'd have something like this and we get steeper. Well, okay, of course we can also get flatter honey. This is 44 minutes. Yeah, we stop bonus 10. We can also if we have a negative a flip it that were like this of good of good shit. Anyway we did my friends right hurry up. You've been in the park and I'm recently a new vehicle. So my body has just have not know what why. Now the second family of curves as I said, these are ellipses with a horizontal major axis centered at the origin. I'm so they probably look something a bit like this. So one. Yeah. Will you suck their dicks? Will you go home? Yes. Yeah. Well we started with gay Star Wars. That was a star was you know, a lot of you are going to say this happen. Mhm. How many times little eating on you want to have sex, right? Not him. Looking at the ellipses and the cubic functions. They do appear to be orthogonal trajectories of each other. That is the tangent lines at the point of intersection. Like here here, here and here do appear to be orthogonal

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

07:12

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

10:57

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

08:29

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

00:38

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

04:18

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

08:24

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

09:09

Two curves are orthogonal if their tangent lines are perpendicular at each poin…

01:05

Show that the given families of curves are orthogonal trajectories of each othe…
Additional Mathematics Questions

02:35

The weekly revenue from the production and sale of x units of coal is given …

01:32

Sketch the graph of f by hand and use your sketch to find the absolute exist…

02:42

Mark shoots arrows ata target and hits the bull's-eye about 30% of the …

04:39

1. (5.1) Using the correct symbols, write down the population mean and stand…

00:44

Question 5
3 pts
Consider taking samples of size 100 from population w…

01:56

Quesjen &
Iall ( other factors are held constant; which of the follow…

02:07

Fill in the blank with the appropriate word or phrase
When constructing c…

01:05

Use the tabulated values of f to evaluate the left and right Riemann sums fo…

02:57

Esparo Kala has 320 meters of fencing and wishes to form three sides of a re…

02:42

The base of a solid is the region in the cy-plane between the the lines y = …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started