Let $ A $ be the area under the graph of an increasing continuous function $ f $ from $ a $ to $ b $, and let $ L_n $ and $ R_n $ be the approximations to $ A $ with $ n $ subintervals using left and right endpoints, respectively.

(a) How are $ A $, $ L_n $, and $ R_n $ related?

(b) Show that $$ R_n - L_n = \frac{b - a}{n} [f(b) - f(a)] $$

Then draw a diagram to illustrate this equation by showing that the $ n $ rectangles representing $ R_n - L_n $ can be reassembled to form a single rectangle whose area is the right side of the equation.

(c) Deduce that $$ R_n - A < \frac{b - a}{n} [f(b) - f(a)] $$

## Discussion

## Video Transcript

Okay, The first thing we know is that a is for and be a seven. Therefore, we know that Delta X is gonna be seven minus for divide by ad, which is equivalent to three over and therefore the area is the limit as an approaches infinity.

## Recommended Questions