Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use logarithmic differentiation to find the deriv…

02:19

Question

Answered step-by-step

Problem 45 Easy Difficulty

Use logarithmic differentiation to find the derivative of the function.

$ y = x^{\sin x} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Carson Merrill
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Carson Merrill

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:40

Frank Lin

00:48

Doruk Isik

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 6

Derivatives of Logarithmic Functions

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:29

Use logarithmic differenti…

00:56

Use logarithmic differenti…

01:10

Use logarithmic differenti…

02:38

Use logarithmic differenti…

02:44

Use logarithmic differenti…

01:39

Use logarithmic differenti…

01:18

Use logarithmic differenti…

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56

Video Transcript

So for this problem we have is right equals X to the sign of acts. And whenever we're dealing with these kinds of functions where we have an exponents with the X and the base with the ex, we want to implement logarithms Andi specifically the natural log. Here's why If we take the natural log of both sides, we can simplify this by getting rid of the exponents. So now we have a sine X out in front. Then we can take the derivative of this and perform implicit differentiation. So when we take the derivative of this portion right here, we get one over. Why times why prime? And that's going to be equal Thio here. What? You will use what's known as the product rule. You may have already been doing it a lot a tous point. So if the product role we take the first portion of the product and just keep it there but we multiply it by the derivative of the second portion. So this portion right here, natural log of X, give us one over X and then what we have is plus, we keep the natural log of access time and then multiply it by the derivative of Sine X, which is just Code Synnex. Now that we've done this, we want Thio, Combine all these terms and simplify further. So we'll get the sign of X over X and then this will just become natural log of X code Synnex Um And then lastly, what we want to do is multiply the Y on both sides. So when we do that, we have Why over here? But we know that why is ultimately equal to X to the cynics. So that's gonna be our final answer. Notice how we make things a little bit more messy by putting the natural logs in. But ultimately it made things simpler because it allowed us to do product rule rather than having to deal with the exponents, which are much more difficult to differentiate. Um, so it's a helpful technique that you will use oftentimes, whenever you see an exponents with a variable in both the base and the exponents portion

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
162
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
70
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:29

Use logarithmic differentiation to find the derivative of the function. $ y …

00:56

Use logarithmic differentiation to find the derivative. $$f(x)=x^{\sin x}$$

01:10

Use logarithmic differentiation to find the derivative. $$f(x)=(\sin x)^{x}$$

02:38

Use logarithmic differentiation to find the derivative of the function. $ y …

02:44

Use logarithmic differentiation to find the derivative of the function. $ y …

01:39

Use logarithmic differentiation to find the derivative of the function. $$y=x…

01:18

Use logarithmic differentiation to find the derivative of the function. $$y=…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started