Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use the form of the definition of the integral gi…

12:12

Question

Answered step-by-step

Problem 21 Easy Difficulty

Use the form of the definition of the integral given in Theorem 4 to evaluate the integral.

$ \displaystyle \int^5_2 (4 - 2x) \, dx $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Robert Daugherty
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Robert Daugherty

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

04:10

Frank Lin

00:38

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 2

The Definite Integral

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

06:28

Use the form of the defini…

09:33

Use the form of the defini…

02:27

Use the form of the defini…

00:20

Use the form of the defini…

12:12

Use the form of the defini…

06:14

Use the form of the defini…

0:00

Use the form of the defini…

00:20

Use the form of the defini…

00:55

Use the form of the defini…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75

Video Transcript

Okay, so this problem 5 to 21. So we have a definite integral from 2 to 5 for minus two X. And were asked to use this theorem four we saw in this section which is the limit definition of the definite integral to figure this out exactly. So what I will do when I start out one way to make this easier is to break this definite interrupt. So The integral from 2 to 5 of 4 -2 x. Dx is the integral from 2- five of 4 DX Minour the integral from 2 to 5 of two X. Dx. The reason I do that is this first one is very easy. Okay, this first one is just for times five minus two, And so that was just turns out to be this one is equal to 12. Okay, and so we'll come back there in just a moment. So if I can just figure out what the next interval is, that was gonna be, where more of the work is involved. So let's see if we can figure out how do we figure out the integral From 2 to 5 of two? X. Dx Ok, so in this case delta X is going to be 5 -2 over in Which is three over in. So this is going to be the limit. Yeah, as in approaches infinity. Yeah, of the some yeah, I Equal 1 to end. The width of each rectangle is three over in and then the height of each rectangle is going to be dysfunction evaluated. So if you look at it, so it's the function evaluated at um a plus I, delta X. So that is going to be um two Plus 3 I over in. So that is going to be um So you've got a two Yeah. And then X is going to be when you substitute an X. That is gonna be two plus Hi Tom So three I over and so all of this, so it's going to be the limit as n approaches infinity. Ah The some I got one to end and you've got to two plus three items three over in um things we can do out front, we can bring the two and the three out front. So this is the limit as in Approaches Infinity. Um I can have a six and then I'm left with the some I equals one to end and I'm left with one over in and two plus three I over in. Yeah. And so now I just go and evaluate um um each of these. Okay, so now what you're keying in on is things that I need to know. The sum I equal one to end of two is going to be two in and the sum I equal one to end of, I Thanks to Gaza's role that is going to be in times in plus 1/2. So those are the pieces of information that are going to get me where I need to be on this particular problem. So if I look at this, this is going to be yeah, the limit as in approaches infinity of six and then now let's just take those thumbs away, so you're gonna have one over in. Mhm. And then the sum for two is just going to be two in and then you're going to have plus three over in and then the sum of I that's just going to be in Times in plus one over two. So now I just need to do some simplification, so if I look at this um I can have some cancellations with this end, this end this in, so this is going to be equal to What is it? six times the limit in approaches infinity. And so what I'm left with here is to uh huh Plus Mhm 3/2. Yeah, and then I'm left with N plus one. Yeah, over in. Yeah. Mhm. And I can also write this Mhm As six times the limit. Mhm In approaches infinity of two. Okay, Plus three halves and I can just write this as one plus one over in. Now as N goes to infinity then this term right here the term is going to go to zero, So this is going to be six times two plus three halves which is going to be um That is going to be six times, that's four plus three, that is six times seven halves, which is 21. So now what I've proven is that I know that this is the integral from 2 to 5 of two, X. D. X. is 21. So if I go back to where I started all of this This integral from 2 to 5 to excess 21 so 12 -21 is minus nine. So the big key here is like, well in reality, yeah, the calculus ended about the time you got two right here and set up that limit. And then everything else was just you know, there's a lot of sequence in series and limits from freak out that are coming in. But places that mistakes can be made for sure.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
96
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
55
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Heather Zimmers

Oregon State University

Kayleah Tsai

Harvey Mudd College

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

06:28

Use the form of the definition of the integral given in Theorem 4 to evaluate t…

09:33

Use the form of the definition of the integral given in Theorem 4 to evaluate t…

02:27

Use the form of the definition of the integral given in the theorem to evaluate…

00:20

Use the form of the definition of the integral given in Theorem 4 to evaluate …

12:12

Use the form of the definition of the integral given in Theorem 4 to evaluate t…

06:14

Use the form of the definition of the integral given in Theorem 4 to evaluate t…

0:00

Use the form of the definition of the integral given in Theorem 4 to evaluate t…

00:20

Use the form of the definition of the integral given in Theorem 4 to evaluate …

00:55

Use the form of the definition of the integral given in Theorem 4 to evaluate …
Additional Mathematics Questions

00:55

Find k if (k/2,4) is the midpoint of line joining (-6,5) and (2,3) ..... Imp…

01:19

A labourer gets Rs 675 for nine days work. How many days should hework to ge…

01:36

(a) In a coordinate plane, if a point P(2, 4) shifts 2 units vertically upwa…

02:01

22) If – 1 is a zero of the polynomial p(x) = ax³
– x²
+ x + 4, the fi…

01:06

17. The length of a rectangular park is 80 m and its breadth is 60 m. Find t…

02:06

13. If AABC - APQR, perimeter of ABC =32 cm, perimeter of PQR = 48 cm andPR …

02:06

13. If AABC - APQR, perimeter of ABC =32 cm, perimeter of PQR = 48 cm andPR …

01:40

(30 points!)
Deepika is employed in a company on a daily payment basis. T…

00:33

Deepika is employed in a company on a daily payment basis. The daily payment…

01:34

draw circle of radius 3.5 CM draw any two of its non parallel chords constru…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started