Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Match the graph of each function in (a)-(d) with …

07:28

Question

Answered step-by-step

Problem 2 Medium Difficulty

Use the given graph to estimate the value of each derivative. Then sketch the graph of $ f' $:

(a) $ f'(0) $
(b) $ f'(1) $
(c) $ f'(2) $
(d) $ f'(3) $
(e) $ f'(4) $
(f) $ f'(5) $
(g) $ f'(6) $
(h) $ f'(7) $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Daniel Jaimes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Daniel Jaimes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 8

The Derivative as a Function

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

04:05

Use the given graph to est…

01:36

Use the given graph to est…

0:00

Use the given graph to est…

0:00

Use the given graph to est…

19:14

Use the given graph to est…

03:18

Use the given graph to est…

02:16

Use the given graph to est…

01:21

Use the given graph to est…

03:31

Use the given graph to est…

04:21

Use the given graph to est…

04:31

Use the given graph to est…

02:48

1-2 Use the given graph to…

02:32

If $ f $ is the function w…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67

Video Transcript

this problem. Number two of the Stuart Calculus eighth edition section in two point eight. Use the given graft to estimate the value of each derivative, then sketched the graph of F crime. So this is a graph of F given as this certain shape. And this is a graph for this problem, and we're hoping to sketch a graph of F prime or the derivative of dysfunction. And we're going to do that by finding the derivative for each point from zero to seven. X equals zero tech sickle seven and then using each of the individual values on DH this plot here, tio, plot what our function will look like. Okay, so we begin with X equals zero. What is the slope? What is the derivative at the origin we look at our function on? We see that it has a pretty steep, positive soap. It goes approximately up little more than three. This is with attention. Lang would look like, uh so it's not to re over one the slope. It probably is more closer to four over one or five over one from as to how steep the slope of this tangent, Linus. So as an estimate. We're going to say that the rise over run is for for the slope at the origin. Carping at X equals one. What? It's a derivative. What is the tension? I ll look like tension in line at X equals one. It looks like this all right, touches the function at X equals one only at one place and the line is horizontal, meaning that it has a slope of zero at X equals one. Add X equals two. We take a look at where the function is at X equals two. It's right here. Let's say that we went down one and over one thats not quite a line that is tangent to the function. And so we go down to approximately and over one that seems to be a little too steep. So when they get one over one, it's not steep enough. Negative two or one a little too steep. How about halfway halfway between negative one Negative too. That seems more appropriate as attention line, uh, for this function. So half way we can make it a one or negative to three over to, and that will be our estimate for the Slope X equals two at X equals three. What is the derivative? What is this stuff of the attention line X equals three. This is the point here, crossing that Texas. And we see that if we draw attention, line on that it is closely associate ID approximately ah, equal to a slip of negative one. So that is our best estimate. We're going to go with a slip of negative one for At X equals three and X equals four. We look at where that point is. Two. Three, for this is the point X equals form. We're trying to estimate what potential and my look like we'd go down one and we'LL go over one thats not quite steep enough or it's a little too steep. So we go over to and this seems to be a bit more appropriate if we were to draw this tension line here. That seems to be a pretty appropriate tension. Lame at X equals four. And this slope here is down one over to a rise of negative one over two. That is a slope of the negative one house annexe Eagles fry. What is the derivative of F one, two, three, four, five This is the point for the function. There's a slope world. Well, tryingto as to me by going up one in going over one, two. Uh, it seems to be a good estimate. How about three? I think that is a little better. We know that the slope add five as it gets closer to the next value. I'm The slopes are going from steeper tonight. A Steve. So this seems to be a better estimate. Um, the sloping arise of negative on and a run of three or closer to that than negative one over to. So we're going to see that they're slow. Estimate at X equals five is negative. One over three at X equals two six. This is where the function is at X equals six. We see that it is it horizontal pendant horizontal line on the slope of zero. So six there's a minimum and the slope of the tangent line zero. So the dirt of zero and finally at X equals seven, one, two, three, four, five, six, seven. This is where the point is. All right, if we go down and then over one too steep for the soap over two Still seep three, four five at five. We imagine it a more approximate tangent. So this is what ah, run of five and a rise of naked one would look like. So this being a slow a rise of one. So this is a rise of one and a run of five. That is a slope of one over five or one fifth. And this seems to be more amore. Appropriate estimate for the tension. This liberal potential in an X equals seven. So we're going to go with one over five. Great. So finally, we're going to plant this function in this F prime function, and we're going to supply each of these points for X equals zero through X equals seven. Starting with X equals zero. The point. The value of the derivative is for the next point at X equals one. The value of the derivative is zero for X equals. So we're gonna draw a couple things here in a draw, make it one, continue the function a little lower, and then draw negative too. Okay, being this in mind, what is the next point at X equals two. The stop is thinking of three over to our negative one half that's approximately right here at X equals three. The value of the dirt of his negative one right about there at X Eagles before the value is approximately negative. One half right right there had X equals to find the value of the dirt is a personal maid of one third. So just a little higher closer to the X axis. An ex eagles to six, the value the dirt of zero. So now across the X axis. And Alex, he was the seventh valued. The jury was one fifty. So this is what the shape of the function will look like. Now we found thie. Sure, if it is at each of the points. And now we plotted them separately and we join them with the single smooth curve to estimate and sketch the parent behavior of this function of crime. So this is a sketch of the graph of Prime that we found it right from the individual irritants. Eight different points of the graph of F given here and that completes this problem

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

04:05

Use the given graph to estimate the value of each derivative. Then sketch the g…

01:36

Use the given graph to estimate the value of each derivative. Then sketch the g…

0:00

Use the given graph to estimate the value of each derivative. Then sketch the g…

0:00

Use the given graph to estimate the value of each derivative. Then sketch the g…

19:14

Use the given graph to estimate the value of each derivative. Then sketch the g…

03:18

Use the given graph to estimate the value of each derivative. y= f(x) (a) f'(-3…

02:16

Use the given graph to estimate the value of each derivative: y= fW) (a) F'0) (…

01:21

Use the given graph to estimate the value of each derivative. Then sketch the g…

03:31

Use the given graph to estimate the value of each derivative. Then sketch the g…

04:21

Use the given graph to estimate the value of each deriva- tive. Then sketch th…

04:31

Use the given graph to estimate the value of each deriva- tive. Then sketch th…

02:48

1-2 Use the given graph to estimate the value of each derivative. Then sketch t…

02:32

If $ f $ is the function whose graph is shown, let $ h(x) = f(f(x)) $ and $ g(x…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started