Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use the guidelines of this section to sketch the …

04:52

Question

Answered step-by-step

Problem 31 Hard Difficulty

Use the guidelines of this section to sketch the curve.

$ y = \sqrt[3]{x^2 - 1} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Jamie M
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Jamie M

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 5

Summary of Curve Sketching

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:31

Use the guidelines of this…

20:32

Use the guidelines of this…

15:54

Use the guidelines of this…

14:38

Use the guidelines of this…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76

Video Transcript

So here we know the domain is exes, all riel. There are no ass in totes because it's not a rational function. So no, ask him to its And we know that the symmetry is even because when we do f of X is equal to f of negative X. So this is even and for our intercepts, we have, um if we said why equal to zero, we have zero equals the cube root of X squared minus one. And so take, um, this side to the power of three, this side to the power of three. And we're left with zero equals X squared minus one. So we can see that X is equal to plus or minus one. And similarly, if we plug in zero for X, we're going to see Mom. Why equals the cube root of zero minus one? So we see that this is 010 negative. One is an intercept here. So zero negative one is an intercept as well as from this one. We see it's plus or minus. Come on, plus or minus 10 for other intercept intercepts. And now we have to find why prime? Because the first riveted test allows us to see increasing and decreasing intervals. So if this is why, then why prime is 1/3 X squared, minus one to the power of negative to over three times in the inside. So to X, why prime equals to over three x times X squared minus one to the power of negative to over three. And if we set this equal to zero to find critical points X is equal to zero and X is also equal to plus or minus one. So it's true. The first derivative test. It's a crime and put her critical points. We have zero negative ones and positive one. So we test values in the first derivative. Anything smaller than negative one negative. Anything in between. Negative one and zero negative between zero and one positive and anything beyond one is positive. So here, we see, is going from negative to positive. So this is Amen. So we're done in the first derivative test. So now we have to look a con cavity. So now we have our first derivative. We have to find second derivative Furqan cavity. So why double prime is equal to negative two x squared plus six favor nine times X squared minus one to the power of five over three. And if we set that equal to zero, we see that X is approximately plus or minus 1.7. It's about it's a squared of three. So let's make a line for the second derivative test Testing for con cavity Negative 1.7 in positive, 1.7. So here we see anything smaller than 1.7 is going to be negative. Anything. And we're testing in the second derivative, remember? And then anything between negative 1.7 and 1.7 is positive than anything beyond 1.7 is negative. So here we see. This is positive. So this is Khan gave up and here it's concrete down. And here it's concrete down. And also we see a sign change from positive to negative. Negative 1.7 and from positive to negative, Um, at 1.7. So this is an inflection point. And so is this inflection point at one place a negative 1.7 in 1.7. So this tells us that con cavity for Agra. Now we can grab it. So here we have zero negative one. So zero negative one. This isn't intercept positive one and negative one. Her also intercepts, and it's even. So we're gonna see symmetry across the Y axis. And now we see that it's there's an inflection point at around negative 1.7. So around here and around 1.7, so around here, So it's gonna change con cavity. So over here it's gonna be con cave down and around 1.7, it's gonna switch to Khan gave up, it's gonna hit the axis, it's gonna be concave down. And then it's gonna go back up here, and it's going to go from 1.7 and beyond. Its gonna be back to con cave down. So about 1.7 and the sources which backed it down. And this is the graph for the function

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
178
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
75
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

04:31

Use the guidelines of this section to sketch the curve. $ y = \frac{x}{\sqrt…

20:32

Use the guidelines of this section to sketch the curve. $ y = \frac{\sqrt{1 …

15:54

Use the guidelines of this section to sketch the curve. $ y = \sqrt{x^2 + x …

14:38

Use the guidelines of this section to sketch the curve. $ y = \frac{x}{\sqrt…
Additional Mathematics Questions

06:06

Sketch the following logarithmic function. Identify three points that lie on…

01:24

The bones of # prehistoric man found in the deser of New Mexico contain appr…

03:28

A ship leaves Port A and travels 51 miles due west to point C It then adjust…

01:22

0 0= Ivll = 0 v=(2i Find the magnitude ua the Ivl: nearest tenth the L neede…

02:10

Question points) A cable that is 25 feet long goes from the ground to the to…

02:07

(1 point) You are driving along a country road when you suddenly notice a lo…

03:17

Tha formula A - 21.2e 0.0405t models the population cf US state, A, in milli…

04:20

pt) A researcher for Agri-Giant Corporation wants to study how many pounds o…

02:11

Question 7 (1 point) Decide which method of data collection vou would use to…

02:05

Question 25 (1 point) Use z-scores to make the following comparison; A high …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started