Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use the guidelines of this section to sketch the …

07:01

Question

Answered step-by-step

Problem 35 Hard Difficulty

Use the guidelines of this section to sketch the curve.

$ y = x\tan x $, $ -\pi /2 < x < \pi /2 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Jamie M
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Jamie M

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 5

Summary of Curve Sketching

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

07:19

Use the guidelines of this…

12:06

Use the guidelines of this…

07:01

Use the guidelines of this…

01:11

Use the guidelines of this…

01:09

Use the guidelines of this…

02:31

Use the guidelines of this…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76

Video Transcript

So we are given this function, and this is the domain that textbook gives us. So the intercepts for this are, um, every pie and, um, we're gonna see an intercept, but that's not inside of our domain. So it's disregard that, um, and we're gonna have 00 that is in our domain and still to write that down symmetry. It is an even graph. So we'll see symmetry there and ask him to, um it's every pie over to end. Well, go ahead and write that in, because on even though it's not included in our domain just so that we can visualize a little better. So pi over to end we every pie over two times, you know, an integer We're going to see an ass in two. All right, so I'm gonna start the graph. So let's say this is negative Pi over, too. And this is pi over, too. Remember that pirate ooze? Ah, essence. What? That comes along with the tinge, um, graft. So by over to a negative pi over to that's our bounce for the domain. All right? And we already said that we do have a nascent Oh, there. So everything within the ASM totes. We're going to have, um, our graph with in here. All right. And now, um, to see where increases and decreases will find the first derivative. So why prime? Why? Prime equals tangents. X plus x times seeking Squared X. All right, so that's our first derivative. And let's find this thing and derivative over at it. So why Double prime is equal to two x sequence time. Sequins squared X tangents, X times Tanja X close to seek inns squared X. All right, so those are derivatives. And now, um, so this is the first derivative so of prime. So I'm gonna test for increasing and decreasing between the bounds I have so between negative pi over, too, and is and also our intercepts that so let's put that on there. Zero. So it's he was going on there and pie over, too. And since we know the intercept, let's just put that so 00 is our intercept and it is also a point on a graph. All right, so now if we test points here into the first derivative anything betweennegative pi over two and zero, it's going to be negative in therefore decreasing anything between zero and pi over two is going to be increasing. So that's our first derivative test, All right, and now let's look at the second derivative. This is F double prime. Let's look at this same, um, between the same numbers. So negative pi over too zero in high over, too. So plugging in values into the second derivative, betweennegative Pi over two and zero, it's gonna become cave up, since it's positive. And here is, well, it's gonna be con cave up. So because there's no sign change, it's not an inflection point. And it's always gonna be con cave up between the interval Negative pi over two and pie or two. That's not included. All right, so that's a second derivative test. So what we know is that, um, it's, uh before zero. It's decreasing. And then when it hits zero, it's increasing, and it's always Khan gave up. So we know that it's gonna look something like this decrease. It's gonna be decreasing our intercept and then increase, and it's always gonna be con cave

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
94
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
54
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Kayleah Tsai

Harvey Mudd College

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

07:19

Use the guidelines of this section to sketch the curve. $$ y=2 x-\tan x, \quad-…

12:06

Use the guidelines of this section to sketch the curve. $$y=x \tan x, \quad-\p…

07:01

Use the guidelines of this section to sketch the curve. $ y = 2x - \tan x $,…

01:11

Use the guidelines of this section to sketch the curve. $y=\frac{1}{2} x-\sin …

01:09

Use the guidelines of this section to sketch the curve. $y=\sec x+\tan x, \qua…

02:31

Use the guidelines of this section to sketch the curve. $y=\csc x-2 \sin x, \q…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started