Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use the Ratio Test to determine whether the serie…

02:56

Question

Answered step-by-step

Problem 14 Easy Difficulty

Use the Ratio Test to determine whether the series is convergent or divergent.

$ \displaystyle \sum_{n = 1}^{\infty} \frac {n1}{100^n} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 6

Absolute Convergence and the Ratio and Root Tests

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

0:00

Use the Ratio Test to dete…

03:20

Use the Ratio Test to dete…

02:57

Use the Ratio Test to dete…

03:31

Use the Ratio Test to dete…

03:44

Use the Ratio Test to dete…

03:31

Use the Ratio Test to dete…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53

Video Transcript

you re like tio use the ratio test to determine whether the Siri's conversions air diversions. So this means that we should look at the limit and goes to infinity absolute value and plus one over an where Anne is given by this term here. So let's just go ahead and replace the numerator and denominator. So in this case, we replace and within plus one in our formula here. So that will give you and then in the denominator and which is just this. And I removed that slew value because all these terms were positive, so there's no need for it now. Let's just go ahead and take that blue fraction, flip it upside down and then multiply to the red fraction. So now to make this would be easier. If you look at the one hundred terms here, the corresponding terms weaken right. That is one hundred to the end, and then the denominator. We can write that it is one hundred times one hundred to the end, and we could cancel those off. That will give you just the one over one hundred. And now we have to deal with these factorial terms here. So if you see and plus one fact, Auriol factorial Just go to the definition. This is just a product of all the numbers all the way up to N plus one imagers in the denominator. And so we see, we only cancel the first in terms here, and we're still left with the n plus one. Okay, so when we take that limit will have something approaching infinity divided by hundred. So this will diverge off to infinity. Now, since we're using the ratio test, we see that we have an expression that's strictly bigger than one. And that implies that the Siri's diverges yeah, and urges by the racial cyst.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

0:00

Use the Ratio Test to determine whether the series is convergent or divergent. …

03:20

Use the Ratio Test to determine whether the series is convergent or divergent. …

02:57

Use the Ratio Test to determine whether the series is convergent or divergent. …

03:31

Use the Ratio Test to determine whether the series is convergent or divergent. …

03:44

Use the Ratio Test to determine whether the series is convergent or divergent. …

03:31

Use the Ratio Test to determine whether the series is convergent or divergent. …
Additional Mathematics Questions

03:44

Consider all four-digit numbers that can be made from the
digits 0-8 (ass…

01:10

Assume that a procedure yields a binomial distribution with a
trial repea…

06:40

In 2016 Americans owed $1.3 trillion in student loans. The
default rates …

13:00

You pick three cards at random from a standard deck. Find the probability of…

04:10

A sample of 50 observations is selected from one population with
a popula…

02:18

Please answer this in the best way you can!!!!
1. You survey a random sel…

03:29

A fruit-packing company produced peaches last summer whose
weights were n…

01:46

assume that when adults with smartphones are randomly selected, 58% use them…

01:22

Assume that a procedure yields a binomial distribution with a
trial repea…

01:39

A sample of n = 12 scores has a mean of M = 65 and an estimated
standard …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started