Enroll in one of our FREE online STEM summer camps. Space is limited so join now!View Summer Courses

Georgia Southern University

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71

Need more help? Fill out this quick form to get professional live tutoring.

Get live tutoring
Problem 54

Use the region $R$ with the indicated boundaries to evaluate each double integral.

$$\iint_{R} x^{2} y^{2} d x d y ; \quad R$ bounded by $y=x, y=2 x, x=1$$

Answer

$\frac{7}{18}$

You must be logged in to like a video.

You must be logged in to bookmark a video.

## Discussion

## Video Transcript

All right. So here we are, integrating disfunction over this specified region functions X squared. Why squared t x t? Why in the region is bounded between, understand? Sketch it quick. So x y No. Okay, so it says y cause X years. Why? Cause X Y equals two accidents be appear next, and then X equals one. So here's our region right here. Okay. And so we're going to make a choice whether we really want to do X first or wife first, and, well, it seems like to me, you should do Why First, if you do x first, you're gonna have to break it up into two equal. So that immigrating X here, it's going to depend on the wires. Ah, Why? From zero one or wanted to. So, I mean, if you if you are not following, just you can just do it both ways and and see what I mean. Okay, so I'm going to integrate, actually. Why? First and now that means I'm going to be fixing an X value between here. Okay. My region is going from zero toe one and X and then where am I going? I'm going from Well, Michael's ex. So in terms of Ana indexing next value. And so I'm going from Why all the way up, Tio? Well, why was to expect in terms of eggs, That's why over too. So this is gonna be exes going from zero to one. And then why is going to be going from X here? Yeah, yeah, Just sex to do X. Okay. And then we have our function X squared y squared. Tio, I k'nex Okay? Yes, over here. And just wise made from eggs up to two ex for any fixed X. So here. No one and I derivative with respect. Why? So we'LL get one third no X squared. Why? Cubes evaluated from Exeter to X. What? What is that there? Okay, so that's I'm gonna cube this and then subtract this cube. So that's looking like So that was just going to be executed within. I ate excused minus one. Excuse us seven execute. But then I have Miss X. Uh, squared. OK, so all in all, it should be seven x to the fifth. Okay, so we have seven thirty compactor out X to the fifth. That's one sixth next to the sixth about a J from zero to one. But this is just one. So we end up with seven over eighteen

## Recommended Questions