Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use the Table of Integrals on Reference Pages 6-1…

02:30

Question

Answered step-by-step

Problem 20 Medium Difficulty

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral.

$ \displaystyle \int \frac{\sin 2 \theta}{\sqrt{5 - \sin \theta}}\ d \theta $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Foster Wisusik
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Foster Wisusik

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 6

Integration Using Tables and Computer Algebra Systems

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

03:58

Use the Table of Integrals…

01:28

Use the Table of Integrals…

02:51

$5-32$ Use the Table of In…

05:30

Use the Table of Integrals…

02:33

Use the Table of Integrals…

01:10

Use the Table of Integrals…

02:59

Use the Table of Integral…

05:36

Use the Table of Integrals…

01:58

$5-32$ Use the Table of In…

05:50

Use the Table of Integrals…

02:41

Use the Table of Integrals…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46

Video Transcript

Okay, so this question wants us to evaluate this integral. So to do this, let's use the identity. That sign of Tooth Ada is to Science Data Co signed data. So this tells us that are integral becomes two times the integral of sine theta co sign data divided by square root of five minus sign data dif ada. So now from there, we can substitute this to make it into a more digestible form. So let's pick you equal to sign data. So that means that D u. Is co signed dated data, which means are integral turns into two times. Well, scientist, it is you co signed a dictator is do you over square root of five minus you. And then this form of an integral is exactly this formula from the back of the book. So we have a equal of five and be equal to minus one. So that means are integral is equal to keeping that factor of two in front to over three times b squared times. Bu Sorry. Yeah. BU minus two a times the square root of a plus B you, which is original expression plus c. So then if we multiply all this out, we get 4/3 times negative. You minus 10 square root of five minus you, plus C and factoring out a negative one from that first term, we're left with this form. So now all we have to do is plug in science data for you, and we're done.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
94
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
54
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Michael Jacobsen

Idaho State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

03:58

Use the Table of Integrals on the Reference Pages to evaluate the integral. $$ …

01:28

Use the Table of Integrals on Reference Pages $6-10$ to evaluate the integral. …

02:51

$5-32$ Use the Table of Integrals on Reference Pages $6-10$ to evaluate the int…

05:30

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral. …

02:33

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral. …

01:10

Use the Table of Integrals on Reference Pages $6-10$ to evaluate the integral. …

02:59

Use the Table of Integrals on Reference Pages $6-10$ to evaluate the integral.…

05:36

Use the Table of Integrals on the Reference Pages to evaluate the integral. $$ …

01:58

$5-32$ Use the Table of Integrals on Reference Pages $6-10$ to evaluate the int…

05:50

Use the Table of Integrals on the Reference Pages to evaluate the integral. $$ …

02:41

Use the Table of Integrals on Reference Pages 6-10 to evaluate the integral. …
Additional Mathematics Questions

03:27

For the following exercises, use the angle in the unit circle to find the va…

00:42

In the Law of Sines, what is the relationship between the angle in the numer…

01:58

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

00:58

For the following exercises, find the reference angle, the quadrant of the t…

01:43

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

03:13

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

03:41

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

05:59

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

04:04

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

04:10

For the following exercises, assume $\alpha$ is opposite side $a, \beta$ is …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started