Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Sketch the graph of a continuous function on $ [0…

03:49

Question

Answered step-by-step

Problem 44 Hard Difficulty

Use the Trapezoidal Rule with $ n = 10 $ to approximate $ \displaystyle \int_0^{20} \cos (\pi x)\ dx $. Compare your result to the actual value. Can you explain the discrepancy?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Foster Wisusik
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Foster Wisusik

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 7

Techniques of Integration

Section 7

Approximate Integration

Related Topics

Integration Techniques

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

04:53

Use the Trapezoidal Rule w…

Watch More Solved Questions in Chapter 7

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50

Video Transcript

Okay. This question wants us to approximate this integral. Using the trap is lead role and compare that to the actual result. So it wants us to use the trap is owed a room with an equal to 10 which says that area is approximately Delta X over too times f off the starting point plus two times the middle values plus f of the other end point. Because again, we're double counting the areas in the middle during this approximation. So doing this, we see the area is approximately Well, what is Delta X? So let's do a little aside here. Delta X. Cols 20 minus zero over 10 which is equal to so it's equal to two over two. So we're not even gonna write anything half of zero plus f of two plus Sorry to effort to plus two of four plus all the way up to yes of 20. So if we do this, we see that our area equals one plus two plus two plus two plus plus one based on this formula. So we have nine twos in the middle, plus two from the end. So we get that area is approximately equal to 20 by the Trap Ysidro. But now let's see what the actual result is. Integral from 0 to 20 co sign of pie Axe D X is well, the anti derivative of co sign is signed. And then we have to divide by the chin loo factor of Tai. We're evaluating that from 0 to 20 and that's just one over pi times sign of 20 pie minus side of zero. And both of these air zero. So it says the rial area zero. So why is there a discrepancy here? Well, here's what's happening. If we look at our graph so co sign of pie axe is going to look something like this. Actually, I'll draw bigger period her smaller period so we can really see what's going on here. So with our trap resides, basically, we are. We're only hitting the positive portions of this graph because our sub intervals are too big. So we're only hitting these positive peaks soar, missing all this negative portion. So, for example, the area of CO sign of pie axe over these periods, if we just want the absolute value of co sign X, it should be 40 because we're only retrieving half the area here. We're just not take into account the negatives. So since Delta X is too large, we, Ms Oh, of the negative area, So that's a danger of approximation. You have to make sure your Delta X is small enough to catch sensitivities like that in the graph.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Integration Techniques

Top Calculus 2 / BC Educators
Heather Zimmers

Oregon State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:53

Integration Techniques - Intro

In mathematics, integration is one of the two main operations in calculus, with its inverse, differentiation, being the other. Given a function of a real variable, an antiderivative, integral, or integrand is the function's derivative, with respect to the variable of interest. The integrals of a function are the components of its antiderivative. The definite integral of a function from a to b is the area of the region in the xy-plane that lies between the graph of the function and the x-axis, above the x-axis, or below the x-axis. The indefinite integral of a function is an antiderivative of the function, and can be used to find the original function when given the derivative. The definite integral of a function is a single-valued function on a given interval. It can be computed by evaluating the definite integral of a function at every x in the domain of the function, then adding the results together.

Video Thumbnail

27:53

Basic Techniques

In mathematics, a technique is a method or formula for solving a problem. Techniques are often used in mathematics, physics, economics, and computer science.

Join Course
Recommended Videos

04:53

Use the Trapezoidal Rule with $n=10$ to approximate $\int_{0}^{20} \cos (\pi x…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started