Calculate $\Delta G^{\circ}$ at 298 $\mathrm{K}$ for each reaction:

$$\begin{array}{l}{\text { (a) } 2 \mathrm{H}_{2} \mathrm{S}(g)+3 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{SO}_{2}(g)} \\ {K=6.57 \times 10^{173}} \\ {\text { (b) } \mathrm{H}_{2} \mathrm{SO}_{4}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{SO}_{3}(g) ; K=4.46 \times 10^{-15}}\end{array}$$

## Discussion

## Video Transcript

No transcript available

## Recommended Questions

What is the difference between $\Delta G, \Delta G^{\circ},$ and $\Delta G_{298}^{\circ}$ for a chemical change?

How does the value of $\Delta G^{\circ}$ for a reaction reaction relate to the equilibrium constant for the reaction? What does a negative $\Delta G^{\circ}$ for a reaction imply about $K$ for the reaction? A positive $\Delta G^{\circ} ?$

Consider the following relationships:

$$\Delta G^{\circ}=1, \Delta H=T \Delta S, Q=1, \Delta G=\Delta G^{\circ}, K=1$$

Which of these relationships is(are) always true for a reaction at equilibrium?