Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

What is the minimum vertical distance between the…

04:20

Question

Answered step-by-step

Problem 5 Easy Difficulty

What is the maximum vertical distance between the line $ y = x + 2 $ and the parabola $ y = x^2 $ for $ -1 \leqslant x \leqslant 2 $?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Chris Trentman
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Chris Trentman

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:44

WZ

Wen Zheng

00:47

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 7

Optimization Problems

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.

Maya R.

December 14, 2021

Amrita is the worst tutor of all the worst ones they have on Numerade, can't stand her. Get rif of her please before you start losing subscribes because of her. Lazy tutor.

AO

Alex O.

July 12, 2020

i seriously hope that no one is paying amrita for this--horrible explanation. Lazy and lousy teaching.

Top Calculus 2 / BC Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:01

What is the maximum vertic…

04:20

What is the minimum vertic…

01:16

Find the maximum vertical …

03:29

Minimizing Distance Find t…

00:42

What is the closest straig…

04:14

Find the minimum distance …

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82

Video Transcript

maximum vertical distance between the line white was X plus two and the parameter of y equals X squared for X between negative one and positive too. Well, to do this first, let's find what the vertical distances between these two graphs recall. This distance D legal. There's a function of X. Well, this is going to be the square root of the difference of why coordinates. This is X squared minus X plus two squared. Now we know the vertical distance MM is maximized when he squared is maximized as well. So do you swear, Becks? I call this function f a bex. Well, this is X squared minus expose to squared. Now, to find the maximum vertical distance forward. To find the maximum of this function f of X, we're going to find its derivative. So at the prime of X is by the chain ruled two times X squared minus X minus two times two X minus one and we set this equal to zero. Well, this is only equal to zero when X squared minus X minus two equals zero or two x minus one equals zero. In the first case, the discriminate Delta E squared which is one minus four times a and see well, it's positive. So it has solutions. In fact, we can factor this as X minus two times X plus one equals zero. And so we get X equals two, where X equals negative one. Her second equation. This gives us X equals one half. However, we're only looking for excess between negative one and two. But all of these satisfy that. So we have three critical points native one one half hand, too. Now, we're going to compare the value of F I usually these critical points so f of negative one to plug this in. This is negative one squared, which is one minus one minus two squared negative two squared or four. I'm sorry. This should be one plus one minus two squared, which is zero f of one half. This is one half squared or four minus one half minus two. This is negative. 1/4 minus two. All this squared now. This is negative. 11 4th squared, no negative. 7/4 squared, no negative 9/4 square. My mistake. So this is 81 16th. Likewise. F two plug this in. This is two square which is four minus two minus two squared. This is zero squared or zero. So it's clear that yeah, the maximum value occurs at one of the critical values were at the endpoints, which happened to be the same as two of the critical values. And so f has absolute maximum on the interval. Negative 12 at X equals one half. Therefore, the maximum vertical distance the of one half. Well, this is the square root of one half squared, Just 1/4 minus one half minus two squared, which is the same as the absolute value. Uh huh. Negative 9/4 which is just positive. 9/4. So this is our answer.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
67
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
45
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:01

What is the maximum vertical distance between the line y = x + 6 and the parab…

04:20

What is the minimum vertical distance between the parabolas $ y = x^2 + 1 $ and…

01:16

Find the maximum vertical distance $d$ between the graphs of $y=x^{2}-1$ and $y…

03:29

Minimizing Distance Find the coordinates of the points on the graph of the para…

00:42

What is the closest straight line to the parabola $y=x^{2}$ over $-1<x<1$ ?

04:14

Find the minimum distance from the parabola $y=x^{2}$ to point $(0,3)$
Additional Mathematics Questions

03:33

'4. Professional basketball scouts are on the lookout for tall players.…

05:02

"magical statistician has been challenged to estimate the number of Ber…

01:43

'A spinner has 20 equally-sized regions that are labeled 1, 2, 3, 4, 5,…

01:39

'The Sad State Lottery requires you to select a sequence of four differ…

09:16

'Determine the upper-tail critical value ta / 2 in each of the followin…

02:39

'A farmer wants to buy between 90 and 100 acres of land, He is interest…

01:39

'Problem 2
Let 20 people; including exactly 3 women, seat themselves…

00:53

'A snowplow has maximum speed of 40 miles per hour on a dry highway: It…

03:53

'(Using Appendix C-1 or Appendix C-2 find the p-value for each test sta…

04:08

'Use the following table showing political party aftiliation and gender…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started