Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

What is wrong with the equation? $ \displaysty…

02:10

Question

Answered step-by-step

Problem 56 Easy Difficulty

What is wrong with the equation?

$ \displaystyle \int^2_{-1} \frac{4}{x^3} \, dx = -\frac{2}{x^2} \Bigg]^2_{-1} = -\frac{3}{2} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Yuki Hotta
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Yuki Hotta

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:44

Frank Lin

00:18

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 5

Integrals

Section 3

The Fundamental Theorem of Calculus

Related Topics

Integrals

Integration

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

00:40

What is wrong with the equ…

00:41

What is wrong with the equ…

00:56

What is wrong with the equ…

03:50

What is wrong with the equ…

00:31

What is wrong with the equ…

01:28

Describe why the statement…

01:36

Describe why the statement…

01:14

$45-48$ What is wrong with…

01:43

Explain what is wrong with…

01:17

$45-48$ What is wrong with…

01:46

Describe why the statement…

04:14

Evaluate the integral. Int…

Watch More Solved Questions in Chapter 5

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86

Video Transcript

Okay, so let's go through one of thieve Eri common mistakes that a lot of people make when we do into So you see a rational function right here and then we're going to try to take the integral and evaluated from negative 1 to 2. So if you remember the power rule, the integral basically says if I take the anti derivative with respect to X, you will have X to the n plus one, all divided by M plus one. So, using that idea, you can consider execute as X to the negative three. So the expression basically boils down to negative two over X squared, and then you're going to evaluate it from negative 1 to 2. If you plug in the numbers, the first number is going to be negative to over four. You're going to subtract negative two divided by one. So it simplifies into negative three over to looks good, right? But it turns out that this is actually not a proper integral. It's not one of those things where we are allowed to do these calculations. Okay, Why? It will make sense when you actually graph it. The graph off four over X cubed. As you can see, you have a variable on the denominator. So when you have things like that, by the time you're doing calculates, most of most people are aware of this. But you have to be very mindful that if x zero there's going to be a division by zero, so many weird things could happen, right? So the integration limit is from negative 1 to 2, which actually includes zero. So if I take a look at it, the graph roughly roughly looks something like this. And then what we're trying to do is to try to evaluate the values from here, too. There, quote unquote under the curb, which goes all the way down to infinity, comes all the way up from infinity, and then we're trying to calculate that area. And as you can see, it blows up very quickly. So it doesn't make sense to say that it's going to be negative three over to, especially because we know that this portion looks like it's going to be bigger than at least this portion, right? So things doesn't make sense when you don't do the proper, Um, when you don't use when you don't follow the proper rules. In this case, this is not a continuous function between the interval negative 1 to 2, and that that makes this an improper interval. So you have to take steps to make sure that you're doing it the correct way.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Integrals

Integration

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

05:53

Integrals - Intro

In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.

Video Thumbnail

40:35

Area Under Curves - Overview

In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.

Join Course
Recommended Videos

00:40

What is wrong with the equation? $$\int_{-1}^{2} \frac{4}{x^{3}} d x=-\frac{…

00:41

What is wrong with the equation? $ \displaystyle \int^1_{-2} x^{-4} \, dx = …

00:56

What is wrong with the equation? $$\int_{-2}^{1} x^{-4} d x=\frac{x^{-3}}{-3…

03:50

What is wrong with the equation? $\left.\int_{-1}^{3} \frac{1}{x^{2}} d x=\frac…

00:31

What is wrong with the equation? $\int_{-1}^{3} \frac{1}{x^{2}} d x=\frac{x^{-…

01:28

Describe why the statement is incorrect. $$\int_{-2}^{1} \frac{2}{x^{3}} d x=\…

01:36

Describe why the statement is incorrect. $$\int_{-2}^{1} \frac{2}{x^{1}} d x=\f…

01:14

$45-48$ What is wrong with the equation? $$ \int_{-1}^{2} \frac{4}{x^{3}} d x=…

01:43

Explain what is wrong with the statement. $$\int \frac{3 x^{2}+1}{2 x} d x=\fra…

01:17

$45-48$ What is wrong with the equation? $$ \int_{-2}^{1} x^{-4} d x=\frac{x^{…

01:46

Describe why the statement is incorrect. $$\int_{-1}^{1} x^{-2} d x=[-x+1]_{-1}…

04:14

Evaluate the integral. Integral from 2 to 4 dx/ (x^2 − 1)^3/2
Additional Mathematics Questions

07:59

6. A rare disease exists with which only in 550 is affected: A test…

04:38

Find the general solution by substitutionlelimination: dx = 3x + 2y…

02:20

please be quick to answer and thank you

In parallelogram ABcD …

07:31

please explain the steps u did, thanks!
9. Inquiry /Problem Solving The V…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started