Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The family of bell-shaped curves $$ y = \frac{1}…

07:30

Question

Answered step-by-step

Problem 71 Hard Difficulty

A drug response curve describes the level of medication in the bloodstream after a drug is administered. A surge function $ S(t) = At^p e^{-kt} $ is often used to model the response curve, reflecting an initial surge in the drug level and then a more gradual decline. If, for a particular drug, $ A = 0.01 $, $ p = 4 $, $ k = 0.07 $, and $ t $ is measured in minutes, estimate the times corresponding to the inflection points and explain their significance. If you have graphing device, use it to graph the drug response curve.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Leon Druch
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Leon Druch

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

09:54

Fahad Paryani

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

0:00

A drug response curve desc…

03:33

A drug response curve desc…

0:00

A drug response curve desc…

01:26

A drug response curve desc…

01:49

$$
\begin{array}{l}{\te…

18:45

Drug pharmacokinetics The …

03:20

A dose-response curve is g…

04:03

Drug Reaction The rate of …

01:46

The rate of reaction $r$ t…

01:02

A model for the concentrat…

00:35

The rate $R$ at which the …

05:54

A model for the concentrat…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

called the search function and it's equal to uh some number eight times T. To the p power times E. To the negative K. Times T. Power S. Is the level of medication and bloodstream T. Is the number of minutes that have elapsed for this particular Search function A. is .01 times T. To the P. Power where P. Is given to be four. And then that multiplies E. To the negative K. T. K. Is given to be point oh seven. So that's E. To the negative zero. Actually .07. Each of the negative .07. Each of negative Katie each of negative .07 R. T. So we are going to graft dysfunction using dez mose. And then we're going to look for the inflection points and kind of describe what's going on with this search function at those uh inflection points. Okay so using Dez most I graphed the search function. Dez most uh prefers to work with the variable X. So instead of the variable T. Which was representing minutes, we're just using the variable X. And since the number of minutes that have elapsed since the injection uh should be greater than or equal to zero. Uh graphing dysfunction for uh time less than zero really doesn't mean anything. So to uh make the graph, you know look a little less confusing. I restricted uh dysfunction to being graft off when the number of minutes X. Is greater than or equal to zero. Uh The goal here is to estimate the time which would be the horizontal X. Axis, estimate the time at which inflection points occur. Now, an inflection point occurs when the second derivative of the function is zero. Uh Basically it's signals an inflection point signals when the first derivative uh will change from increasing to decreasing if the second derivative is zero, that means the first derivative reaches a maximum point meaning the first derivative or the steepness to slope. If you will was increasing, reached a maximum point now will start decreasing or vice versa. Uh An inflection point being where the second derivative is zero. Inflection point could also be where the first derivative reaches a minimum, the first derivative is decreasing, reaches a minimum and then starts increasing. Now if we're looking for the first derivative to be at a maximum point or minimum point. That means, for example, if we say the first derivative is reaching a maximum, that means to first derivative was increasing, reaches a maximum point will start decreasing. Well, the first derivative lets you know, you know just how steep the function itself is increasing or decreasing. So if we're looking for where the first derivative is going to change from increasing or decreasing, we want to look for a change in the steepness of the curve. Let me go back to our uh whiteboard here and give you an idea of what um what an inflection point would look like. Just so you have an idea of what we're looking for. If I have a function it's going up steeply. Okay, But then at this point it's still gonna be increasing but at a at a slower rate. Okay, this would be an inflection point. The function is still increasing, but the rate at which it's increasing uh as indicated by the first derivative um is changing here to function is increasing at a quicker and quicker rate. So to slope or the first derivative is increasing. Then at this inflection point, uh the second derivative zero. The first derivative reaches a maximum. Uh The function itself still increases but now at a slower rate because F prime of X now is starting to decrease. So this would be the graph of the function F and uh f prime of X would change from the slope. Would at this inflection point changes from uh increasing and increasing to where the slope or the derivative is now uh decreasing. Okay, so at prime of X changes from positive two negative. The second derivative at this inflection point would be zero. So this is what happens at an inflection point. At an inflection point. Uh function will still be increasing. And of course this can also be shown for a function that is decreasing through an inflection point. Let me give you no idea what that looks looks like. Um If I uh three very set. If I have a function that's decreasing reaches an inflection point still decreases. But now at a slower rate. This would also be an inflection point Um at an inflection point the second derivative is zero and the first derivative changes signs. So here the first derivative is changing signs at this point here the first derivative is positive. Uh Here the first derivative will be negative at this inflection point, The second derivative will be zero here, the first derivative is negative and then at the inflection point, first derivative becomes positive even though the function is still decreasing through that inflection point. So we're looking for a bend or you change in the bend of the curve. That's where these, that's where these inflection points are. C Okay, we're going up but then we change how steeply you can think of it as common cavity kind of concave duck. And then we start con caving down here, we're concave down and then we start uh at the inflection point becoming concave uh So we can estimate um Here you can see that the function is increasing. And then approximately around here there might be an inflection point right around here at approximately uh t equals 25 Maybe 30. Um so when T is 30 minutes, uh the function is still increasing fastest inflection point. Um but not as deeply. Okay, here it's climbing up steeply reaches an inflection point and then starts, you know kind of rounding off. Think of this as concave up Until time is 30 minutes and then concave down. So it's a little hard to see here if we zoomed in and be a little bit easier but we have a point of inflection here and then we have another point of inflection here here the function is coming down. it's the inflection point. The function keeps decreasing but now at a slower rate. Okay here is kind of concave down if I exaggerate it. And then at this inflection point here at approximately 100 minutes uh to function changes come cavity and starts becoming concave, let's go back to our white board and write down those two times. So the two values of T. Of course on our graft the variables X 22 values of T. That are inflection points would be, It looks like when T. 35 minutes We have an inflection point and then we have another inflection point uh when X in the graph or are variable t. 100 minutes. So let's go back to our graph and uh kind of describe what's going on with our search function at these inflection points. So uh when uh t or in this case ex uh number the number of minutes. The time is 30 minutes. We have an inflection point. So for 30 minutes we are at this point on the graph. So the surge is increasing uh rapidly. Um until we reach a time of 30 minutes and then the surge continues increasing but at a slower rate that's what happens. Uh the rate at which it's increasing uh changes. Okay, the surge is increasing and increasing the rate at which the surge, the rate at which the function is increasing is itself increasing until the inflection point. Then the function the surge keeps increasing after 30 minutes. But at a slower rate. Now, when the time was 100 minutes, we estimated there was another inflection point here, at 100 minutes. Uh here the surge is decreasing rapidly until we reach 100 minutes. That's another point of inflection and then the search is still decreasing. But at a slower rate, that's what's happening at those two inflection points.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
142
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Kayleah Tsai

Harvey Mudd College

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

0:00

A drug response curve describes the level of medication in the bloodstream afte…

03:33

A drug response curve describes the level of medication in the bloodstream afte…

0:00

A drug response curve describes the level of medication in the bloodstream afte…

01:26

A drug response curve describes the level of medication in the bloodstream aft…

01:49

$$ \begin{array}{l}{\text { A drug-loading curve describes the level of medica…

18:45

Drug pharmacokinetics The level of medication in the bloodstream after a drug i…

03:20

A dose-response curve is given by $R=f(x),$ where $R$ is percent of maximum res…

04:03

Drug Reaction The rate of reaction to a drug is given by $$r^{\prime}(t)=2 t^{…

01:46

The rate of reaction $r$ to a given dose of a drug at time $t$ hours after admi…

01:02

A model for the concentration at time $t$ of a drug injected into the bloodstre…

00:35

The rate $R$ at which the drug level in the body changes when an intravenous li…

05:54

A model for the concentration at time $ t $ of a drug injected into the bloodst…
Additional Mathematics Questions

01:53

There are seven cats in my neighborhood, with an average of $41$ whiskers ea…

00:54

Donna bought 3 bags of dog treats for $8.40. What is the cost per bag of dog…

01:27

A baker determined the annual profit in dollars from selling pies using p n(…

01:03

For every 4 basketballs there are 5 baseballs

00:56

for a fundraiser, Hailey raises $27, plus 1.50 for each lap she swims. Taria…

01:30

Find the factored expressions of 42x + 28y

01:05

Kevin uses 2/3 cup of flour to make 2 servings of biscuits. How many cups of…

01:01

Find the x intercept (s) of the line
Y= -8x-16

02:12

A gumball machine contains 300 grape flavored balls, 400 cherry flavored bal…

00:54

A husband and wife can complete a certain task in 1 and 2 hours respectively…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started