Download the App!
Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.
Question
Answered step-by-step
(a) Graph the function $$ f(x) = x - 2 \ln x \hspace{10mm} 1 \le x \le 5 $$(b) Estimate the area under the graph of $ f $ using four approximating rectangles and taking the sample points to be (i) right endpoints and (ii) midpoints. In each case sketch the curve and the rectangles.(c) Improve your estimates in part (b) by using eight rectangles.
Video Answer
Solved by verified expert
This problem has been solved!
Try Numerade free for 7 days
Like
Report
Official textbook answer
Video by Robert Daugherty
Numerade Educator
This textbook answer is only visible when subscribed! Please subscribe to view the answer
05:51
Frank Lin
Calculus 1 / AB
Chapter 5
Integrals
Section 1
Areas and Distances
Integration
Campbell University
Baylor University
Boston College
Lectures
05:53
In mathematics, an indefinite integral is an integral whose integrand is not known in terms of elementary functions. An indefinite integral is usually encountered when integrating functions that are not elementary functions themselves.
40:35
In mathematics, integration is one of the two main operations of calculus, with its inverse operation, differentiation, being the other. Given a function of a real variable (often called "the integrand"), an antiderivative is a function whose derivative is the given function. The area under a real-valued function of a real variable is the integral of the function, provided it is defined on a closed interval around a given point. It is a basic result of calculus that an antiderivative always exists, and is equal to the original function evaluated at the upper limit of integration.
06:09
(a) Graph the function $f(…
05:13
15:48
(a) Graph the function
(a) Graph the function…
07:55
08:25
Answer
01:15
6. (a) Graph the function<…
04:46
Estimating Areas Using Rec…
03:44
(a) Estimate the area unde…
So this problem we have a function F of X is x minus two. Natural log of x. First part was too graphic. So whatever tools you use if your graphing on paper, if you've got your favorite graphing tool, we see the graph here. And what we're asked to do is to use rectangles to approximate the area under the curve. So the first thing in the first part is to use four rectangles. Okay, so if I'm going to use four rectangles, I'm trying to approximate the area that goes from one over 25 So if I use four rectangles, each rectangle is one in length and they say use the right point of each interval to determine the height of that rectangle. So what that means is you're gonna have F F two, f three, f four, and f F five to determine the height of the rectangles. So the first part is going to be the width of the rectangle, so the width Is going to be one and then the height of each rectangle, so the height is gonna be determined by F. Of two. Okay. Plus f. of three Plus f of four Plus F of five. And that will give me my approximation to the area using four rectangles. So let's take a look at this on our calculator. Um So if I store the function, I've stored the function F. Of X. So F. Of X. Sorry about that. Um So I've stored F of X as X minus two natural log of X. So it's one times and then that's going to be F of two Plus f of three F. Of four. But f. of five. And that gives me 4.4-5. So this first estimate with four rectangles right In Points four 4 to 5. So this is about 4.4. And what did I say? 4.4? Uh 25 Yeah. Now they ask is to keep those same for rectangles, but instead of using the right point, use the midpoint, so the mid points will be happening at 1.52 point 53.54 point five. So it's going to be one times, And this is gonna be f of 1.5 Plus f of 2.5 Plus f. of 3.5 Plus f. of 4.5. So that's using the midpoint of each rectangle. So let's just go back and look at that on our calculator. And what I'll come up with there is I can just recall this command And it's just f of 1.5, Half of 2.5 of 3.5 And F of 4.5. So I get the approximation of 3.84, so 3.84 is my approximation yeah. Using mid points. Okay if I want to find out how I'm doing, I looked at this real quick if I looked at the actual value of this Um definite integral is about 3.91 or 3.905. So the exact value is so the the exact value is close To what was that? Um 3.905, So 3.905. So what I see so far is the mid points with four rectangles was better than the right side of each rectangle. What they do in the next part is to say let's do the same exercise but with eight rectangles. So if I have eight rectangles then you've got the 5 -1 is four. When you divide that by eight each rectangle is going to be one half. Okay so let's do that. You're gonna have the width is one half. Yeah? Okay. And then you're going to have eight rectangle. So if I use the right side, okay. So if I split this up using the right side of each one, that's gonna be 1.5 to 2.5 3. So let's try that. That's going to be F of 1.5 Plus f of two Plus f of 2.5 Plus F of three. Okay. Plus f of 3.5 Plus f. A four mm hmm. Plus F 4.5 plus f. Oh, wow of five. Count them up. 12345678 values here. So let's see what this gives us in our calculation. So you're going to have 0.5 times f of 1.5 plus F. Of two Plus f. of 2.5 Plus f. of three plus f. Of Yeah, 3.5 plus f of four Plus f of 4.5 Plus F of five. 4.13 so 4.13 is the approximation that I get there. So this is about 4.13. So what I can see is originally when I did that same calculation with With four rectangles, I got 4.4 with eight rectangles, I got 4.13, so I'm converging closer to the real number, so I should get even a better result if I use the mid points, that was already a better exercise to begin with. So if I look at the mid points, So the mid points are gonna be, so if you look at the rectangle of one half is going to be at the .25, so 1.25 And then 1.75. So that's where I'm going to find. Mid points. So for mid points this is going to be one half. Um So one half and then you're gonna have f at 1.25. Yeah. Plus f of 1.75 Plus F of 2.25. Mhm. Plus f of 2.75 Plus f of 3.25 Plus f of 3.75. Mhm. Plus f of 4.25 Plus f of four point 7512345678 of those. Let's figure out what this one is going to be. So go back to my calculator and let's just change all of these up. So it starts here. Um Yeah, That's 1.25 And then 1.75 And then 2.25, 2.75. Mhm. 3.25, yeah 2.75 4.25. And lastly 4.75 3.889. So my approximation here is 3.889. Yeah. Yeah. Mhm. And you can see that that's even closer that's the best one yet closest to the actual value Of 3.95.
View More Answers From This Book
Find Another Textbook
05:34
A customer visiting certain department store will purchase suit with probabi…
04:11
3.50. MLB Averages The histogram below shows batting averages for 2535 playe…
00:53
QUESTION 2 Using the Utilities-Variables option outlined on page 20 ofyour t…
03:36
Use the image belowanswer the following question:87 ?7 ? ? 28420 828…
04:51
A set of data has a normal distribution with & mean of 5.1 and & sta…
02:03
Exercise 1.2.8 Consider the following augmented matrix in which denotes an a…
01:54
Ina survey; students attwo community colleges estimated the hours they spend…
05:35
8. Each time a component is tested, the trial is & success (S) or failur…
03:28
Show that any function from a finite set to itself containscycle.~
01:02
Suppose babies born after gestation period of 32 to 35 weeks have mean weigh…