Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

(a) Find the average rate of change of the area o…

05:09

Question

Answered step-by-step

Problem 12 Hard Difficulty

(a) Sodium chlorate crystals are easy to grow in the shape of cubes by allowing a solution of water and sodium chlorate to evaporate slowly. If $ V $ is the volume of such a cube with side length $ x. $ calculate $ dV/dx $ when $ x = 3 $ mm and explain its meaning.

(b) Show that the rate of change of the volume of a cube with respect to its edge length is equal to half the surface area of the cube. Explain geometrically why this result is true by analogy with Exercise 11(b).


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Heather Zimmers
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Heather Zimmers

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:27

Amrita Bhasin

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 3

Differentiation Rules

Section 7

Rates of Change in the Natural and Social Sciences

Related Topics

Derivatives

Differentiation

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:47

(a) Sodium chlorate crysta…

02:24

(a) Sodium chlorate crysta…

05:19

Imagine that you have gela…

05:48

Imagine that you have gela…

01:17

A cube 2 $\mathrm{cm}$ on …

05:35

Consider three cubes with …

Watch More Solved Questions in Chapter 3

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39

Video Transcript

The situation here is that the crystal is in the shape of a cube and we're interested in finding the rate of change of the volume with respect to X when X is three. So the volume of a cube is X cubed, and the derivative of that DVD X would be three x squared. So then DVD X for X equals three. We're going to substitute a three in there for X and we get three times three squared and that would be 27 and the units on volume would be millimeters cubed and the units on X would be millimeters. So what this is telling us is that at this particular size of cube, the volume is growing at a rate of 27 cubic millimeters for every millimeter change in X and in part B of this problem, we're looking at surface area. So to get the surface area of a cube, you're going to add the area of every surface. And for this cube, every surface has an area of X squared and there are six of those. So the surface area is six x squared. Notice that the derivative of the volume is half of the surface area. Now let's take a look at that from a geometric perspective. So suppose that the the cube grows bigger and the side length is now Delta X, or the side length is now X plus Delta X. So we added Delta X to each side so the new volume would be X plus Delta X quantity. Cute and the old volume was just execute. So the change in volume is a new volume minus the old volume. And let's work that out. Algebraic Lee. So the change in volume is going to be. We have to cube this by no meal, and so you're gonna have to work that out either using the binomial theorem or just multiply X plus Delta X Times X plus Delta X Times X plus Delta X. Do that very carefully and you're going to get X cubed plus three X squared Delta, X plus three X times Delta X squared plus Delta X cubed and then we still have the minus X cubed at the end, subtracting the volume of the old one. Notice that we can cancel the X cubed in the minus x cubed. So this is our change in volume and suppose we want to know the change in volume over the change in X. So let's go ahead and divide this by changing X, Delta X. And while we're doing that, let's factor out a Delta X from the numerator. So have Delta X Times three X squared plus three x Delta X plus still two X squared. That's over Delta X so we can cancel the Delta X from the top in the bottom. And all we have left is that the change in volume with respect to a change in inside length is three X squared plus three x times Delta X plus Delta X squared. So if Delta X is small, then the second term is going to be very close to zero, and the third term is going to be very close to zero. And the rate of change of volume with respect to X is going to be approximately three X squared

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
151
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
68
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Kristen Karbon

University of Michigan - Ann Arbor

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Video Thumbnail

44:57

Differentiation Rules - Overview

In mathematics, a differentiation rule is a rule for computing the derivative of a function in one variable. Many differentiation rules can be expressed as a product rule.

Join Course
Recommended Videos

02:47

(a) Sodium chlorate crystals are easy to grow in the shape of cubes by allowing…

02:24

(a) Sodium chlorate crystals are easy to grow in the shape of cubes by allowing…

05:19

Imagine that you have gelatin cut into three cubes: the side of cube A is $a$ c…

05:48

Imagine that you have gelatin cut into three cubes: the side of cube A is a cm …

01:17

A cube 2 $\mathrm{cm}$ on a side is cut into cubes 1 $\mathrm{cm}$ on a side. …

05:35

Consider three cubes with lengths of $1 \mathrm{cm}, 5 \mathrm{cm}$, and $10 \m…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started