Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

In a seasonal-growth model, a period function of …

08:48

Question

Answered step-by-step

Problem 22 Hard Difficulty

Another model for a growth function for a limited population is given by the Gompertz function, which is a solution of differential equation
$ \frac {dP}{dt} = c \ln (\frac {M}{P})P $
where $ c $ is a constant and $ M $ is the carrying capacity.
(a) Solve this differential equation.
(b) Compute lim $ _{t \to \infty} P(t). $
(c) Graph the Gompertz growth function for $ M = 1000, P_0 = 100, $ and $ c = 0.05, $ and compare it with the logistic function in Example 2. What are the similarities? What are differences?
(d) We know from Exercise 13 that the logistic function grows fastest when $ P = M/2. $ Use the Gompertz differential equation to show that the Gompertz function grows fastest $ P = M/e. $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Clarissa Noh
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Clarissa Noh

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 9

Differential Equations

Section 4

Models for Population Growth

Related Topics

Differential Equations

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

0:00

Another model for a growth…

01:29

Another model for a growth…

05:17

Limited Growth Equation An…

01:27

The logistic function $$ P…

07:51

In this section, several m…

03:44

Logistic growth Scientists…

Watch More Solved Questions in Chapter 9

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25

Video Transcript

Hey, it's clear. So when you're married here, so we get dp over DT is equal to see l end of em overpay times p to get one over p till end. Um overpay DP is equal to see 18 We're gonna integrate full side I'm gonna get negative. The U is equal to one over PDP How we got this is that we make you be equal to Ln of them overpay So we got do you It's equal to the derivative of em overpay Oh for m overpay which we get to be negative one for a p d. P Now we're just gonna substitute It's again negative won over you We integrate this BU is equal to the integral of CD T to get negative l and of the l on of overpay is equal to C T plus d. We know that m iss bigger than P and Ellen of a number bigger than one. It's gonna be positive, so we just don't need the absolute value signs now get out. End of l and M of P for p This sequel to negative C T minus d put the base to the base of E get into the negative ct off my minus. D you get Ellen of M minus Ellen of you? Because this is just subtract it. If it's the quotient, we get negative. C t minus d we end up getting l n of m minus. Eleanor, that's equal to a e the negative C t Elton of m minus. Hey, e to the negative ct. It's equal to Elena. P get a p volume to be m e to the negative a e the negative ct. Since we make you be equal to E. Ellen of you now for part B, we found this equation from part Aye. So we just take the limit. Us t goes to infinity of em he to the negative b e the negative C t. Which is equal to, um eat negative e the negative infinity which becomes to m e zero, which is equal to em for part C. We just draw a graph. So one graph. Let's say you are, um, logistic function first gonna look something like this and then in red we have our other function Gompertz function, which looks something like this. So we see some similarities. They have the same initial population in the same equilibrium, But they have different points of inflection for part D. We know from part, eh? That d p over d t is equal to Ste e p Elton of em overpay. So we need to find pee when dp over DT is maximum. That's d over dp dp over dp is equal to zero So yet d over dp of seed p l end of, um over P is equal to zero. Then I'll work right here. So we got l and of em overpay times d c p over dp plus c p times d l end of em over a p all over DP is equal to zero Then we get Ln of em over peep time See plus tp my times one over m overpay times negative M Overpay square is equal zero get l N of m o ver p times C minus C is equal to zero We find for Pee Wee Get em over E That is our answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
129
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
63
Hosted by: Alonso M
See More

Related Topics

Differential Equations

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Calculus 2 / BC Courses

Lectures

Video Thumbnail

13:37

Differential Equations - Overview

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Video Thumbnail

33:32

Differential Equations - Example 1

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. An ordinary differential equation (ODE) is a differential equation containing one or more derivatives of a function and their rates of change with respect to the function itself; it can be used to model a wide variety of phenomena. Differential equations can be used to describe many phenomena in physics, including sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, quantum mechanics, and general relativity.

Join Course
Recommended Videos

0:00

Another model for a growth function for a limited population is given by the Go…

01:29

Another model for a growth function for a limited population is given by the G…

05:17

Limited Growth Equation Another differential equation that models limited grow…

01:27

The logistic function $$ P(t)=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{…

07:51

In this section, several models are presented and the solution of the associate…

03:44

Logistic growth Scientists often use the logistic growth function $P(t)=\frac{P…
Additional Mathematics Questions

03:25

Stopping Distance The total stopping distance $T$ of a vehicle is
$$T=2.5…

03:25

Stopping Distance The total stopping distance $T$ of a vehicle is
$$T=2.5…

03:41

Pendulum The period of a pendulum is given by
$$T=2 \pi \sqrt{\frac{L}{g…

03:01

Logarithmic Differentiation In Exercises $63-66,$ use logarithmic differenti…

03:44

Finding an Equation of a Tangent Line In Exercises $67-70$ , find an equatio…

01:40

Finding a Particular Solution In Exercises $15-18$ , find the function $y=f(…

04:00

Comparing Integrals Consider the integral
$$\int \frac{1}{\sqrt{6 x-x^{2}…

09:20

Compound Interest Assume that you can earn 6$\%$ on an investment, compounde…

01:50

In Exercises 17–22, find the limit.
$$
\lim _{x \rightarrow 0^{-}} \op…

07:22

Bacteria Growth The number of bacteria in a culture is increasing according …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started