Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Use vectors to decide whether the triangle with v…

01:19

Question

Answered step-by-step

Problem 24 Easy Difficulty

Determine whether the given vectors are orthogonal, parallel, or neither.

(a) $ u = \langle -5, 4, -2 \rangle $ , $ v = \langle 3, 4, -1 \rangle $
(b) $ u = 9i - 6j + 3k $ , $ v = -6i + 4j - 2k $
(c) $ u = \langle c, c, c \rangle $ , $ v = \langle c, 0, -c \rangle $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Jacquelyn Trost
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Jacquelyn Trost

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

00:59

ag

Alan Ghazarians

Related Courses

Calculus 3

Calculus: Early Transcendentals

Chapter 12

Vectors and the Geometry of Space

Section 3

The Dot Product

Related Topics

Vectors

Discussion

You must be signed in to discuss.
Top Calculus 3 Educators
Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 3 Courses

Lectures

Video Thumbnail

02:56

Vectors Intro

In mathematics, a vector (from the Latin word "vehere" meaning "to carry") is a geometric entity that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. Vectors play an important role in physics, engineering, and mathematics.

Video Thumbnail

11:08

Vector Basics Overview

In mathematics, a vector (from the Latin word "vehere" which means "to carry") is a geometric object that has a magnitude (or length) and direction. A vector can be thought of as an arrow in Euclidean space, drawn from the origin of the space to a point, and denoted by a letter. The magnitude of the vector is the distance from the origin to the point, and the direction is the angle between the direction of the vector and the axis, measured counterclockwise.

Join Course
Recommended Videos

01:25

Determine whether the give…

01:50

Determine whether the give…

01:57

Determine whether the give…

01:05

Determine whether the give…

01:05

Determine whether the give…

02:38

Determine a scalar $c$ so …

02:20

Determining Orthogonal and…

01:49

Determining Orthogonal and…

04:05

(a) find the dot product v…

01:53

Determining Orthogonal and…

02:34

Determine whether the vect…

04:03

(a) find the dot product v…

Watch More Solved Questions in Chapter 12

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65

Video Transcript

this problem. We have three pairs of vectors we're going to examine. I've done one of them in black one and red and one in green. And for each pair of vectors we want to compare them. And we want to know, Are they orthogonal? Which means perpendicular to each other. Are they parallel vectors or neither? So how can we tell what orientation these vectors are to each other? We have a the're, um that's the cosine of Fada fate of being the angle between two vectors. The cosine of Fada is the dot product of the vectors divided by the product of the magnitudes of the vectors. We can use this. The're, um, to answer the question in this problem. First of all, let's look at orthogonal. If the vectors are parallel, that means that they're going to make a 90 degree angle so they they will be 90 degrees well, co sign of 90 degrees zero. So the on leeway for this fraction in this the're, um, toe equal to zero is if our numerator is equal to zero, which means that our dot product would have to equal zero. So let's start there. I'm gonna look in each case and see if they're worth again. Let's just do that first. So I'm going to find the dot product of each of these pairs. First, let's start with the black one. The dot product you dot v. Well, remember for a dot product, we're going to multiply the exes, multiply the wise multiply disease, and we're gonna add them up. So for the first one, when I multiply the exes, I get negative 15 multiplying. The wise gives me 16 multiplying disease gives me too. And that gives me a dot product of three. So these are not orthogonal. Okay, So I I know that to start with, not orthogonal for the black. What about my red pair? Well, this dot product when I multiply, uh, this case because I'm giving it of unit in eyes. Jason case, we still do the same thing on a multiply the coefficients for the eyes, jays and case separately and add them up. I get negative 54 minus 24 minus six. And that gives me a dot product of negative 84. This also is not orthogonal. What about the green ones? Well, this dot product when I multiply the exes. That gives me C squared. The wise gives me zero and disease. Give me negative C squared. That is zero. So my green pear, This is an orthogonal pair avert for of an orthogonal pair of vectors. Okay, Now let's take a look at our second case. Parallel. Well, if two vectors are parallel to each other, then if I lined them up next to each other, the angle between them is either going to be. Zero degrees means they're on top of each other, pointing the same direction or 180. They line up there pointing in opposite directions. So if my ankle is zero or 1 80 then CoSine is either going to be one or negative one. Okay, so which means that that dot product, that numerator and denominator have to either be identical or they have to be opposite sides if either of that is true. So if I get two and two, that's gonna be parallel. If I get to a negative two, that's parallel as well, so I already have the dot products put together. So let's make our denominator. Let's find the magnitude of each of the vectors and we'll add them together. So we'll start with our black pair. The magnitude of vector you Well, that's going to be the square root of each of these numbers. Um, squared. So that's going to be 25 plus 16 plus four, which gives me a square root of the square root of 45. How about V? Well, that magnitude is going to be the square root of nine plus 16 plus one, which is going to give me the square root of 26. Now, if I add if I multiply those together square to 45 times the square to 26 I don't even have to do this to see that it is not going to equal three or negative three. So that numerator denominator. You know, when I compare that to three there, this is not gonna work. This is neither. It is not orthogonal. It is not parallel. Hey, don't have to test our greens. We already know that those air perpendicular to each other. So what about the red pair? Well, the magnitude of you that's going to be the square root of 81 plus 36 plus nine and that's going to give me the square root of 126 square root of V that's going to be 36 plus 16 plus four under that radical, and that's going to give me a value of the square root of 56. Now this one, we do need to multiply together. I can't do this one in my head. And when I multiply those two magnitudes together, that gives me the square root of 7056 which equals 84 so that give me a denominator of 84 a numerator of negative 84 value of negative one. That is a parallel set of vectors. So those are my three pairings and our results.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
180
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
79
Hosted by: Alonso M
See More

Related Topics

Vectors

Top Calculus 3 Educators
Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 3 Courses

Lectures

Video Thumbnail

02:56

Vectors Intro

In mathematics, a vector (from the Latin word "vehere" meaning "to carry") is a geometric entity that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. Vectors play an important role in physics, engineering, and mathematics.

Video Thumbnail

11:08

Vector Basics Overview

In mathematics, a vector (from the Latin word "vehere" which means "to carry") is a geometric object that has a magnitude (or length) and direction. A vector can be thought of as an arrow in Euclidean space, drawn from the origin of the space to a point, and denoted by a letter. The magnitude of the vector is the distance from the origin to the point, and the direction is the angle between the direction of the vector and the axis, measured counterclockwise.

Join Course
Recommended Videos

01:25

Determine whether the given vectors are orthogonal, parallel, or neither. (a…

01:50

Determine whether the given vectors are orthogonal, parallel, or neither. $$ …

01:57

Determine whether the given vectors are orthogonal, parallel, or neither. $$ …

01:05

Determine whether the given vectors are orthogonal. parallel, or neither. (a) $…

01:05

Determine whether the given vectors are orthogonal. parallel, or neither. (a) $…

02:38

Determine a scalar $c$ so that the given vectors are orthogonal. (a) $\mathbf{a…

02:20

Determining Orthogonal and Parallel Vectors, determine whether $u$ and $v$ are …

01:49

Determining Orthogonal and Parallel Vectors, determine whether $u$ and $v$ are …

04:05

(a) find the dot product v $\cdot \mathbf{w} ;$ (b) find the angle between $\ma…

01:53

Determining Orthogonal and Parallel Vectors, determine whether $u$ and $v$ are …

02:34

Determine whether the vectors are orthogonal with respect to the Euclidean inne…

04:03

(a) find the dot product v $\cdot \mathbf{w} ;$ (b) find the angle between $\ma…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started