Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the radius of convergence and interval of co…

02:12

Question

Answered step-by-step

Problem 18 Medium Difficulty

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {\sqrt{n}}{8^n} (x + 6)^n $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Grace He
Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:43

Find the radius of converg…

04:12

Find the radius of converg…

03:15

Find the radius of converg…

03:06

Find the radius of converg…

02:13

Find the radius of converg…

03:11

Find the radius of converg…

03:18

Find the radius of converg…

03:16

Find the radius of converg…

04:50

Find the radius of converg…

00:58

Find the radius of converg…

01:23

Find the radius of converg…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42

Video Transcript

for the radius of convergence. We use the ratio test to figure out which values of X are allowed the ratio test Would you limit as n goes to infinity of absolute value of a N plus one over an where Anne is this whole thing, including the X values. Okay, so once we plug these things and we get some cancellations to occur, what have ah X plus six to the end, plus one on top. Then we'd be dividing by explosives to the end. So we would just end up with the X plus six and then we'd have an eight to the end of top square root of n plus one over hate to the end, plus one square root of N. Okay, so this is just from doing simple algebra here. Remember our way in terms of this whole thing, including the X values were dividing by a n same thing as multiplying by the reciprocal. So they're super cool of this thing. We're gonna have an Aidan on top as we do, and we're going to have a squared off in the bottom as we do over here. A to the n, divided by a to the n plus one that's just going to turn into one AIDS and then squared of in plus one, divided by squared of end is square root of N plus one over N, then goes to infinity and plus one over N is one squared of one is one. So this is just absolute value of X plus six over eight. And we want for this to be less than one, which is the same thing as saying that absolute value of X plus six is less than eight. Said this point. You could say that the radius of convergence this is eight. And if you really want to be sure about it, um, if we have that absolute value of X plus six is less than eight. That's the same thing as saying that X Plus six is trapped between minus eight and eight, and if we have minus eight, is less than explosives and we subtract six from both sides. We get minus fourteen. If we subtract six from eight, then we get to So the length of the interval of convergence is to minus minus fourteen, which is sixteen. Radius of convergence is half of the length of the interval of convergence. So indeed, we get eight as the radius of convergence The interval of convergence. We just need to figure out whether or not we include these end points here. So when X is minus fourteen, we get convergence or divergence for next of minus fourteen, we're going to end up getting minus eight to the end here minus eight to the end of the same thing as minus one to the end times eight to the end. It will get eight to the end of cancel out with eight to the end and then we'LL have some of the squared of anything here the eight to the angel cancel and we'd have ah, this minus one to the end happening here. But these terms are not even going to go to zero. So we can't possibly have convergence squared of end blows up to infinity. So this, for sure, is not going to converge. We get divergence there. So now we need to check the other end point when X is equal to two, see what happens there when X is equal to two through plug in to here we get eight to the end a to the N divided by eight to the end will cancel out So this can't squared of end Being summed up and again This certainly does not go to zero So we can't possibly have convergence We'LL get the emergence there So both of the end points we have Tio toss out So this is going to be our interval of convergence

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
71
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
46
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Grace He

Numerade Educator

Heather Zimmers

Oregon State University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

02:43

Find the radius of convergence and interval of convergence of the power series.…

04:12

Find the radius of convergence and interval of convergence of the series. $ …

03:15

Find the radius of convergence and interval of convergence of the series. $$\su…

03:06

Find the radius of convergence and interval of convergence of the series. $$\su…

02:13

Find the radius of convergence and interval of convergence of the series. $ …

03:11

Find the radius of convergence and interval of convergence of the series. $$\s…

03:18

Find the radius of convergence and interval of convergence of the series. $ …

03:16

Find the radius of convergence and interval of convergence of the series. $$\s…

04:50

Find the radius of convergence and interval of convergence of the power series.…

00:58

Find the radius of convergence and interval of convergence of the series. $$\…

01:23

Find the radius of convergence and interval of convergence of the series. $$\…
Additional Mathematics Questions

01:29

A ship's course is plotted on a coordinate grid with the origin of the …

01:11

A quadrilateral has vertices A(2,6), B(3,7), and C(6,4). Which of the follow…

01:08

An internet passcode consists of a digit followed by a letter, followed by a…

01:21

Match each description of a transformation with the corresponding coordinate…

01:04

A line is perpendicular to y=-2x+5 and intersects the point (-4,2). What is …

02:20

Given JL with J(-9,-5) and L(5,16), if K lies on JL and partitions it such t…

02:18

A, B, C, D and E are points on the circumference of a circle with diameter C…

01:39

A circle in the xy-plane has center (-5,-6), and the point with coordinates …

01:40

An apartment building is 3 stories tall. Each story has 4 identical apartmen…

02:29

An engineering company that restores bridges needs to determine the amount o…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started