Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the radius of convergence and interval of co…

10:44

Question

Answered step-by-step

Problem 19 Easy Difficulty

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 1}^{\infty} \frac {(x - 2)^n}{n^n} $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Gabriel Rhodes
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Gabriel Rhodes

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:00

Find the radius of converg…

08:17

Find the radius of converg…

03:21

Find the radius of converg…

04:08

Find the radius of converg…

02:40

Find the radius of converg…

01:54

Find the radius of converg…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42

Video Transcript

to figure out the radius of convergence will first just look at where the Siri's converges So we'LL use the ratio. Tests take limit as n goes to infinity of absolute value of A and plus one over a n where a. And is this whole thing here, including the X values. So that's limit as n goes to infinity of absolute value of X minus two to the end plus one divided by in plus one the power of in plus one divided by a n, which is something as multiplying by the reciprocal. Okay, so x minus two to the impulse one divided by X minus two to the end. That just simplifies tow X minus two. Okay, that's one of the nice thing about having a common base. And here we don't quite have a common exponents, but in plus one of the power of in plus one can be written as in plus one to the N times in plus one. So if we do that, then we can rewrite this thing like this and now limit as n goes to infinity of in over in plus one to the end. This is one over e So now we have limit as n goes to infinity of absolute value of X minus two over in plus one. And this value is one over e. So he is just some number here and one over in plus one goes to infinity. Doesn't matter what exes as long as exit any finite number. This is just going to go to zero, which is certainly less than one. We're going to get convergence regardless of what value of X. We're looking at here. So the radius of convergence is infinity in the interval of convergence is minus infinity to infinity.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
180
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
79
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Kayleah Tsai

Harvey Mudd College

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

03:00

Find the radius of convergence and interval of convergence of the series. $$\su…

08:17

Find the radius of convergence and interval of convergence of the series. $$\s…

03:21

Find the radius of convergence and interval of convergence of the series. $$\s…

04:08

Find the radius of convergence and interval of convergence of the series. $ …

02:40

Find the radius of convergence and interval of convergence of the series. $$\s…

01:54

Find the radius of convergence and interval of convergence of the series. $$\s…
Additional Mathematics Questions

02:02

6. How many positive numbers less than 100 are possible by using the digits …

02:37

The number of people who visited the Bird park in February decreased by 30% …

00:59

mr santos wants to cover a plot of land measuring 310 cm by 245cm with squar…

00:49

If you toss a coin 2 times, what is the probability of getting 2 heads? *

01:38

A tricycle can carry 2, 3, or 4 passengers. A group of 27 people wants to ri…

00:42

A merchant bought T-shirt at P120 per piece. How much should he sell the T-s…

01:19

a kite held by 125 m of string makes an angle of elevation with the ground o…

00:51


39. What does the measure of central tendency tell us?
a. The central…

01:42

how will you compare your experience in common monomial factoring and factor…

01:04

John ran of a mile yesterday and of a mile today. John said, he ran 1-miles …

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started