Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Find the radius of convergence and interval of convergence of the series.

$ \sum_{n = 2}^{\infty} \frac {(x + 2)^n}{2^n \ln n} $

Get the answer to your homework problem.

Try Numerade free for 7 days

Like

Report

$$[-4,0)$$

Calculus 2 / BC

Chapter 11

Infinite Sequences and Series

Section 8

Power Series

Sequences

Series

Oregon State University

Idaho State University

Boston College

Lectures

01:59

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

02:28

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

06:34

Find the radius of converg…

03:00

08:17

02:31

to figure out the radius of convergence will use the ratio test here to take the limit as n goes to infinity, absolute value of and plus one over and and by and we mean this whole thing. So including the X values here. So this is limit as n goes to infinity of absolute value of X plus two to the end, plus one over two to the end, plus one natural log of in plus one to his are and plus one term divided by a ends multiplying by the reciprocal. We're multiplying by two in natural lot of n divided by tax plus two to the end. So X plus two to the n plus one divided expert to to the end that she's going to leave us with X plus two two to the end of two by two to one plus one is going to leave us with one half. And then we have Ellen of in divided by Ellen of and Plus One, and to figure out the limit as n goes to infinity of natural log of n divided by natural log of one plus one. You do low Potala jewel here so both the top and the bottom blow up to infinity. So you, Khun, apply low Patel's rule Look, tiles rule. You do the derivative of the top divide. By the derivative of the bottoms, we get one over in divided by one over in plus one. So we'd get limit as n goes to infinity in plus one over N, which is just one. So Ellen of end over Alan ofhim plus one does goto one. So this is just absolute value of X plus two. Oh, her too. And we want for that to be less than one. So if we multiply both sides by two, we get absolute value of X. Plus two is less than two. So at this point, you might already be able to see that the radius of convergences too. If you can't, the way you figure it out is if this happens, then X plus two is trapped between minus two and positive too. It's of minus two is less than X plus two. If we subtract two from both sides, that means that minus four is less than X. And if we have X plus, two is less than two. If we subtract two from both sides. We get that X is less than zero. So the length of our interval of convergence is zero minus minus four. So the length of our interval is for the radius of convergence of half of the length of the interval of convergence. So half of four is two. So that's that's our radius of convergence are for the interval of convergence. We need to figure out whether or not we want to include the end points. So whether or not we include X equals zero and whether or not we include X equals minus four. Okay, So if X is equal to zero, then we'd have to do the end over to to the end. Sorry, the two to the end Over to land will cancel. Just have one over natural log of end came in. If N is equal to two or any larger than two, then natural lot of N is going to be something that's smaller than just regular. And if we replaced the denominator was something that's bigger than we should get, something that's even smaller. Okay, so this should be larger in this sum and this sum close up to infinity. That means that this some also has toe blow up to infinity. So this is divergent. Okay? And then we need to figure out what happens when X is minus four. When X is minus four, we'd have minus four plus two, so we'd have minus two to the end. So the two to the ends. Well again. Cancel. Then we have minus one to the end. Happening when X is minus four. Plugin minus four under here. What we get is the sum from n equals two to infinity of minus one to the end. Over natural log of n. And this is going to converge by the alternating signed test. So we do want to include minus four, but we do not want include zero zero gives us divergence minus four. Does not so minus for we include that zero is bad. So we throw that out

View More Answers From This Book

Find Another Textbook

Numerade Educator

01:18

find the sum of the first 30 terms in arithmetics sequence 0,1,2,3

02:40

The sum of two numbers is 139. the smaller number is one less than one-third…

00:29

1. A tailor bought 3 pieces of cut garters. Each piece is 6.33 meters long. …

01:28

an=2-n nth term formula to compute the first six term sequence

01:10

Miranda and her friend Bailey are one year apart. If the product of their ag…

01:14

10. Eighty meters of fencing is available to enclose the rectangular garden …

01:01

Mrs. Aguilar is at the 25th floor of a building. She went 4 floors up to sub…

01:22

By how much is the sum of 14.28 and 11.219 greater than their difference

01:11

Find the next term of the arithmetic sequence 5, 9/2, 4, 7/2, 3, ...

02:46

a man is 7/6 (in fraction) as old as his wife. twenty years ago, he was twic…