Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Find the value of c such that $ \displaystyle \…

03:21

Question

Answered step-by-step

Problem 75 Hard Difficulty

Find the value of $ c $ if
$ \displaystyle \sum_{n = 2}^{\infty} (1 + c)^{-n} = 2 $


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

JH
J Hardin
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by J Hardin

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

Related Courses

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 11

Infinite Sequences and Series

Section 2

Series

Related Topics

Sequences

Series

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

06:15

Find the value of $$c$ if …

00:55

Find the value of $c$ such…

01:52

Find all values of $c$ for…

03:21

Find the value of c such t…

04:05

Find the value of c if
…

01:40

Evaluate $\sum_{n=1}^{\inf…

05:38

Evaluate $\sum_{n=1}^{\inf…

Watch More Solved Questions in Chapter 11

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92

Video Transcript

Let's find the value of C that makes the Siri's equal to so this Siri's here three. Right? This because it's actually geometric weaken. Right, This is one over one plus C to the end cheer measure, and then our equals one over one plus C. And we should eventually make sure that the absolute value of our which is absolute value one over one plus e. But this is less than one. So we have one over one plus c, an absolute value less than one. That means one plus C in the absolute value is bigger than one. And this tells us that we want one placide data that one or one plus see less than minus one. So we either want seed to be bigger than zero. We're over here, see less than negative, too. So we might get more than one answer. But it has to satisfy one of these, too. So let's keep that in mind. See, Has to be bigger than zero. And the reason we want to keep this in mind is in case we have more than one solution, or if even if we have one solution, if it doesn't satisfy one of these, too. For example, C equals negative. One would not be a good choice. It doesn't satisfy one of these, too. So now, assuming C is bigger than zero or seamless the negative two. So this is just to ensure that that flew value bars less than one. We know that the geometric series we have a formula for this. It's the first term of the series which corresponds to any equals two and then we divide by one minus. R. Now let's go to the next page. So the first term when you plug in and equals two and then one minus R, it's got its simplify this what? And then this becomes one over C C plus one and recall that this entire sum was equal to two from the previous page so we can rewrite this equation and then solve this for sea. So we have C equals negative one plus or minus. So this is the quadratic formula. Unless you factor that somehow. So here, B squared, minus four a c. So one, then being plus four times that's going to be a half there and then over to a so it's giving us negative one plus or minus room three over, too. So recall that the radical three is about one point seven. So we're getting approximately negative one plus or minus one point seven over, too. So that's about two point seven over, too, or oops, sorry and see the negative one there. Point seven over, too. Or if we have the minus sign and that's about it. Earth equal to so here recalled. The value of our C had to be either bigger than zero or C was less the negative, too. This value does not work, so we just want to choose the one that we got from the plus side. So here we should on Lee take oh C two b negative one plus the square root of three over, too. Because that one does work, it's point three five, and that one does satisfy one of these, too. So negative one plus room three. All over, too. That's our values for C. That's the on ly one, and that's the final answer

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
83
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
52
Hosted by: Alonso M
See More

Related Topics

Sequences

Series

Top Calculus 2 / BC Educators
Catherine Ross

Missouri State University

Anna Marie Vagnozzi

Campbell University

Michael Jacobsen

Idaho State University

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

01:59

Series - Intro

In mathematics, a series is, informally speaking, the sum of the terms of an infinite sequence. The sum of a finite sequence of real numbers is called a finite series. The sum of an infinite sequence of real numbers may or may not have a well-defined sum, and may or may not be equal to the limit of the sequence, if it exists. The study of the sums of infinite sequences is a major area in mathematics known as analysis.

Video Thumbnail

02:28

Sequences - Intro

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed. Like a set, it contains members (also called elements, or terms). The number of elements (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. Formally, a sequence can be defined as a function whose domain is either the set of the natural numbers (for infinite sequences) or the set of the first "n" natural numbers (for a finite sequence). A sequence can be thought of as a list of elements with a particular order. Sequences are useful in a number of mathematical disciplines for studying functions, spaces, and other mathematical structures using the convergence properties of sequences. In particular, sequences are the basis for series, which are important in differential equations and analysis. Sequences are also of interest in their own right and can be studied as patterns or puzzles, such as in the study of prime numbers.

Join Course
Recommended Videos

06:15

Find the value of $$c$ if $\sum_{n=2}^{\infty}(1+c)^{-n}=2$$

00:55

Find the value of $c$ such that $$\sum_{n=0}^{\infty} e^{n c}=10$$

01:52

Find all values of $c$ for which the following series converges. $\quad \sum_…

03:21

Find the value of c such that $ \displaystyle \sum_{n = 0}^{\infty} e^{nc} = …

04:05

Find the value of c if (1 + c)-n = 1 n = 2

01:40

Evaluate $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} .$ Hint: Find constants $A,…

05:38

Evaluate $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} .$ Hint: Find constants $A,…
Additional Mathematics Questions

00:01

Researchers collected information on the body parts of a new species of frog…

00:01

Researchers collected information on the body parts of a new species of frog…

03:07

For the given data given in stem-and- leaf display form, find the inter-quar…

03:00

QUESTION 23
Urn A has 5 white balls and 7 black balls. Urn B has 3 white …

06:18

QUESTION 3
Urn A has 5 white balls and black balls; Urn B has 3 white bal…

01:58

Q. No. 2: Suppose we want to take a sample of size 3 from a population that …

02:37

point) Consider the recursion
Find all equilibria, then characterize the …

02:37

point) Consider the recursion
Find all equilibria, then characterize the …

04:22

Suppose that electrical components have lifetimes that are independent and c…

02:50

(j) A process sampled 20 times with a sampk of size eight resulted int…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started