Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The cost of producing $ x $ ounces of gold from a…

02:02

Question

Answered step-by-step

Problem 52 Hard Difficulty

If a cylindrical tank holds 100,000 gallons of water, which can be drained from the bottom of the tank in an hour, then Torricelli's Law gives the volume $ V $ of water remaining in the tank after $ t $ minutes as
$$ V(t) = 100,000 (1 - \frac{1}{60}t)^2 \hspace{5mm} 0 \le t \le 60 $$

Find the rate at which the water is flowing out of the tank (the instantaneous rate of change of $ V $ with respect to $ t $) as a function of $ t $. What are its units? For times $ t $ = 0, 10, 20, 30, 40, 50, and 60 min, find the flow rate and the amount of water remaining in the tank. Summarize your findings in a sentence or two. At what time is the flow rate the greatest? the least?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Linda Hand
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Linda Hand

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

09:02

Daniel Jaimes

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 7

Derivatives and Rates of Change

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Grace He
Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

If a cylindrical tank hold…

0:00

If a cylindrical tank hold…

08:57

If a cylindrical tank hold…

06:31

If a cylindrical tank hold…

01:08

If a cylindrical tank hold…

01:07

If a cylindrical tank hold…

06:03

46. If a cylindrical tank …

04:18

A tank holds 50 gal of wat…

04:05

A 50000 L tank can be drai…

04:37

A cylindrical tank is full…

07:40

Torricelli's Law A ta…

05:57

Water flows into a tank at…

0:00

If a cylindrical water tan…

04:16

Torricell's Law A tan…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61

Video Transcript

okay we have a tank and water is flowing out of it and this is a formula for the volume of it. So wants us to find the flow rate and the units of the flow rate and then plug some numbers in. So let's see what happens. So V. Of T. Means it's the volume with respect to time. So it's related to time. So when we find the flow rate we're taking the derivative with respect to T. So T. Is the variable. Okay then leave mushroom. Er So the prime of T. Or if you want to call it D. V. D. T. The same thing. So the 100,000 is a constant and then you've got the next part is squared. So it's derivative is too times the stuff To the one power times the derivative of the stuff which would be -1/60. Okay, so that gives us um -200000 over 60 Times 1 -1/60 T. And so uh huh. I'm just going to leave it like that because Because okay and VFT remember was 100,000 one minus 1/60 T squared. Okay, so it's zero V. Of zero. When T a zero that's 100,000 and the prime of zero is -200000/60 And v. of 10. that will be 101656. That would be 100,000 times 56 squared. And the prime of 10 That will be 56 -200000 or for 60 times 56. All right, so every time it's gonna be the same Soviet 20 will be 100,000 times 46 And this will be -200 whatever or 60 times four. Sixth. Okay, so let's see what's happening and so forth. Yeah, I can use my phone for calculator. So it might not be great. 200,000 divided by 60. So this one is -333. All right then the next 15 divided by six squared 555, 6 squared Times 100,000. Uh huh. So after 10 minutes now, the volume is already down to 69444. And here we have uh 55 x six times 3333. So the flow rate is about this camera on and off. Hey, Can the next one we have four x 6 squared no Times 100,000. So now it's down to 44444 and then six times 3 333. And then the flow rate is this Mhm. Okay. So when is the flow rate the greatest? Well, it's the greatest that the at the beginning. Okay. And it's negative because it's going out. Okay. And it's the greatest because that's the biggest number. So the most is going out at at the beginning and then as the water gets less than the flow rate gets less. So when will it be the least? Will be the least at 50 or whatever is the last thing we're supposed to plug in? Okay, because it's decreasing what?

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
192
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
82
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Grace He

Numerade Educator

Anna Marie Vagnozzi

Campbell University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

If a cylindrical tank holds 100,000 gallons of water, which can be drained from…

0:00

If a cylindrical tank holds 100,000 gallons of water, which can be drained from…

08:57

If a cylindrical tank holds 100,000 gallons of water, which can be drained from…

06:31

If a cylindrical tank holds 100,000 gallons of water, which can be drained from…

01:08

If a cylindrical tank holds $100,000$ gallons of water, which can be drained fr…

01:07

If a cylindrical tank holds 100,000 gallons of water, which can be drained from…

06:03

46. If a cylindrical tank holds 100,000 gallons of water; which can be drained …

04:18

A tank holds 50 gal of water, which drains from a leak at the bottom, causing t…

04:05

A 50000 L tank can be drained in 30 min. The volume of water remaining in the t…

04:37

A cylindrical tank is full at time $t=0$ when a valve in the bottom of the tank…

07:40

Torricelli's Law A tank holds 50 gal of water, which drains from a leak at the…

05:57

Water flows into a tank at the variable rate of $R_{\text { in }}=$ 20$/(1+t)$ …

0:00

If a cylindrical water tank holds 5000 liters, and the water drains from the bo…

04:16

Torricell's Law A tank holds 50 gal of water, which drains from a leak at the b…
Additional Mathematics Questions

03:01

'colony of bacteria has an initial population of 1500 bacteria: After h…

01:01

'How many three-letter "words" can be made from 10 letters &q…

00:29

'How many different ways can a race with 8 runners be completed? (Assum…

03:15

'An instructor at major research university occasionally teaches summer…

01:30

'5.8.5 Explain why any permutation of four variables may be obtained by…

02:30

'57. Consider the following graph=
(3,3)
Y =X
Yy =
2
Whi…

01:01

'Failing to identify hypothesized difference using sampl result when di…

02:20

'15.3.14
Question Help
Consider the region below f(x) = (6 - X) a…

04:12

"Ina lottery game; 40 numbered ping-pong balls are shaken up together i…

03:56

'5.5. Let S be a nonempty set_ Show that the following conditions are e…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started