Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

Sketch the graph of a function $ f $ that is cont…

01:31

Question

Answered step-by-step

Problem 7 Easy Difficulty

Sketch the graph of a function $ f $ that is continuous except for the stated discontinuity.

Removable discontinuity at 3, jump discontinuity at 5.


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Leon Druch
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Leon Druch

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

01:41

Daniel Jaimes

03:17

AK

Anjali Kurse

Related Courses

Calculus 1 / AB

Calculus: Early Transcendentals

Chapter 2

Limits and Derivatives

Section 5

Continuity

Related Topics

Limits

Derivatives

Discussion

You must be signed in to discuss.
Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Sketch the graph of a func…

0:00

Sketch the graph of a func…

01:41

Sketch the graph of a func…

04:20

$5-8=$ Sketch the graph of…

01:45

Sketch an example of the g…

01:07

Sketch a possible graph fo…

01:57

Sketch the graph of a func…

09:53

Sketch the graph of the fu…

01:37

Sketch the graph of a func…

01:16

Draw the graph of a functi…

03:47

Sketch a graph of a functi…

Watch More Solved Questions in Chapter 2

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73

Video Transcript

Okay, we want to sketch the graph of a function F of X. We want a removable dis continuity at three. And the jump just continuity at five. A removable dis continuity when x is straight. So let's have an open circle right here, at X equals tree. And here is the graph of our function As X is approaching three from the left side here is the graph of the function um as X is approaching three from the positive side. Now, let's define a function when X is three to be this point right here. All right. So this is what we would call a removable dis continuity at three. You can see that this function is discontinuous at three because as the function approach, as X approaches three, okay, to function looks like a once approach approach this point. This value here instead, the function is defined to be this value up here. Uh This is a removable dis continuity. If we redefined ffx when X equals three to be this point. If we move this point of the function and put it here, uh then we would have a continuous function. So that's why this is called a removable dis continuity. A jump. This continuity at five is a little more serious. Let's suppose. Um as x approaches five from the left, uh the function is approaching uh this point right here. So this will be the value of the functions when X equals five, but we're going to continue our function um up here with an open circle because if uh F five is this point here, then we can't have another point of the function for the same X value five. So, open circle meaning this is not really on the graph, but then from here on for X is greater than five. We're continuing to graph uh over there. So now that we have an idea what the graph looks like, let's look at it. We said that at X equals three. We have removable dis continuity. The function is discontinuous. You have a low breaking a function but this discount this this this continuity is removable because we can redefine f of X when X equals three. Instead of being this point, put it down here and it will be continuous here. We have what's called a jump dis continuity. There's no way to remedy this. Um here, as X approaches five, the function approaches this point here, but then as we continue on past five, uh function continues on on this portion of the graph up here. Clearly, the function is discontinued. Clearly, the function is discontinuous at X equals five and this is called a jump discontinuity because the graph of F. Quebec's jumped from here and then up to here to continue

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
63
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
42
Hosted by: Alonso M
See More

Related Topics

Limits

Derivatives

Top Calculus 1 / AB Educators
Catherine Ross

Missouri State University

Caleb Elmore

Baylor University

Samuel Hannah

University of Nottingham

Joseph Lentino

Boston College

Calculus 1 / AB Courses

Lectures

Video Thumbnail

04:40

Limits - Intro

In mathematics, the limit of a function is the value that the function gets very close to as the input approaches some value. Thus, it is referred to as the function value or output value.

Video Thumbnail

04:40

Derivatives - Intro

In mathematics, a derivative is a measure of how a function changes as its input changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in response to changes in some other quantity; for example, the derivative of the position of a moving object with respect to time is the object's velocity. The concept of a derivative developed as a way to measure the steepness of a curve; the concept was ultimately generalized and now "derivative" is often used to refer to the relationship between two variables, independent and dependent, and to various related notions, such as the differential.

Join Course
Recommended Videos

0:00

Sketch the graph of a function $ f $ that is continuous except for the stated d…

0:00

Sketch the graph of a function $ f $ that is continuous except for the stated d…

01:41

Sketch the graph of a function $f$ that is continuous except for the stated di…

04:20

$5-8=$ Sketch the graph of a function $f$ that is continuous except for the st…

01:45

Sketch an example of the graph of a function f that is continuous except for th…

01:07

Sketch a possible graph for a function $f$ that has the stated properties. $f(x…

01:57

Sketch the graph of a function that has a jump discontinuity at $x=2$ and a rem…

09:53

Sketch the graph of the function $y=f(x)$ with properties i. through iv. $$…

01:37

Sketch the graph of a function $ f $ that is continuous except for the stated d…

01:16

Draw the graph of a function on [0,5] with the given properties. $f$ has a remo…

03:47

Sketch a graph of a function $f$ that satistics the following conditions: 1. $\…
Additional Mathematics Questions

02:14

In a binomial experiment; the
probability of success does change from tri…

05:02

Suppose it is known that, on average, 5 customers per minute visit your webs…

02:47

the population of a city can be described as P (t) = Poekt , where t = 0 rep…

03:50

4oestor Z0
Frovlde
calz
appropriett response
spceds
miles per…

03:51

a) The root mean square (RMS) value of a function y f (x) in the range x = t…

01:39

Describe the subspace of R3 (is it a line o plane or R3?) spanned by vectors…

01:40

Close to home 2008 study by tne National Highway Tratfic Safety Administrati…

01:07

A bank tests the null hypothesis that the mean age of the bank's mortga…

01:57

point) The shelf life of a battery produced by one major company is known to…

03:19

Question 8
2 pts
Acall center receives an average of 16.7 calls per ho…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started