Download the App!

Get 24/7 study help with the Numerade app for iOS and Android! Enter your email for an invite.

Sent to:
Search glass icon
  • Login
  • Textbooks
  • Ask our Educators
  • Study Tools
    Study Groups Bootcamps Quizzes AI Tutor iOS Student App Android Student App StudyParty
  • For Educators
    Become an educator Educator app for iPad Our educators
  • For Schools

Problem

The graph of the derivative $ f' $ of a function …

03:17

Question

Answered step-by-step

Problem 5 Easy Difficulty

The graph of the derivative $ f' $ of a function $ f $ is shown.
(a) On what intervals is $ f $ increasing or decreasing?
(b) At what values of $ x $ does $ f $ have a local maximum or minimum?


Video Answer

Solved by verified expert

preview
Numerade Logo

This problem has been solved!

Try Numerade free for 7 days

Kian Manafi
Numerade Educator

Like

Report

Textbook Answer

Official textbook answer

Video by Kian Manafi

Numerade Educator

This textbook answer is only visible when subscribed! Please subscribe to view the answer

More Answers

02:21

Fahad Paryani

Related Courses

Calculus 1 / AB

Calculus 2 / BC

Calculus: Early Transcendentals

Chapter 4

Applications of Differentiation

Section 3

How Derivatives Affect the Shape of a Graph

Related Topics

Derivatives

Differentiation

Volume

Discussion

You must be signed in to discuss.
Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:17

The graph of the derivativ…

0:00

The graph of the derivativ…

02:04

The graph of the derivati…

02:29

The graph of the derivativ…

01:35

The graph of the derivativ…

01:36

The graph of the derivativ…

Watch More Solved Questions in Chapter 4

Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Problem 31
Problem 32
Problem 33
Problem 34
Problem 35
Problem 36
Problem 37
Problem 38
Problem 39
Problem 40
Problem 41
Problem 42
Problem 43
Problem 44
Problem 45
Problem 46
Problem 47
Problem 48
Problem 49
Problem 50
Problem 51
Problem 52
Problem 53
Problem 54
Problem 55
Problem 55
Problem 56
Problem 57
Problem 58
Problem 59
Problem 60
Problem 61
Problem 62
Problem 63
Problem 64
Problem 65
Problem 66
Problem 67
Problem 68
Problem 69
Problem 70
Problem 71
Problem 72
Problem 73
Problem 74
Problem 75
Problem 76
Problem 77
Problem 78
Problem 79
Problem 80
Problem 81
Problem 82
Problem 83
Problem 84
Problem 85
Problem 86
Problem 87
Problem 88
Problem 89
Problem 90
Problem 91
Problem 92
Problem 93
Problem 93

Video Transcript

So I've drawn a rough sketch of the graph that we were given which is the derivative of our function F of X. And for part a what we want to figure out where the intervals in which our function is increasing, in the intervals in which our function is decreasing. So where are function is going to be increasing is wherever are derivative is positive. So that's going to be from this point here, when X is equal to one to this point over here, where X is equal to five, since all our values for F prime of X are positive past this 50.1 and before this 0.5. So for two, ever figure out where a function F of X is increasing from its derivative and you're giving the graph of the derivative, Just figure out where we have positive Y values for our derivatives. So are derivative, is increasing increasing on the interval from one 25 And we don't include one or five since we're derivative is equal to zero at those points. And we're not increasing at those points. And now to figure out where we're decreasing, it's going to be wherever our graph is negative. So In this case our graph has negative y values from 0 to 1 and from 5 to 6. So we're decreasing from 0 to 1 and from five 2 6. And again we don't include five. We can actually include six since I'm we have a negative value at that point. So we won't include one since we're zero at that point, we won't include five, but we will include six since we are negative at that point. And now, for part B, what we want to figure out is where our local minimum or maximum values for our function F. Of X. R. Where they're located. So if we look at our graph again, for our derivative of F of X, the maximum and minimum function or minimum values are going to be Located where our function f prime of X is equal to zero. So the two places where we could have a maximum minimum are at this point. And at this point. And to figure out if these are actual maximum or minimum values, we're gonna look at points before and after these points. So before this point we have negative f. Prime of X values. So we're going from negative and then after this point we have positive. So we're going from negative to positive. So we're decreasing and then we're going to be increasing. So if we're looking at a graph that was decreasing or decreasing, decreasing, decreasing, then we then we have a constant or zero slope and then we start increasing. We can see that that would have to be a minimum value, a local minimum value. So wherever our function goes from increasing, they're sorry, from negative values to positive values. That means our function F a bex goes from decreasing the increasing, which means the local minimum. So the local minimum occurs at this point X is equal to one, so local men At X is equal to one. And then if we look at this point at X is equal to five, we can see we're going from increasing or decreasing and so our slope is going from positive to negative. And that means we have a local maximum. So you have a local max At X is equal to five and these don't have to be local. They could also be the actual absolute maximum or absolute minimums. But for there to be min or max is you have to have a change in sign when you're derivative of your function F of X is at zero. So you couldn't have a zero that just touched. Like if we had a different a different F. Prime of X function and it looked like this, we're just touched the X axis and went from positive to positive. That wouldn't be a local backs or local minimum.

Get More Help with this Textbook
James Stewart

Calculus: Early Transcendentals

View More Answers From This Book

Find Another Textbook

Study Groups
Study with other students and unlock Numerade solutions for free.
Math (Geometry, Algebra I and II) with Nancy
Arrow icon
Participants icon
126
Hosted by: Ay?Enur Çal???R
Math (Algebra 2 & AP Calculus AB) with Yovanny
Arrow icon
Participants icon
62
Hosted by: Alonso M
See More

Related Topics

Derivatives

Differentiation

Volume

Top Calculus 2 / BC Educators
Anna Marie Vagnozzi

Campbell University

Heather Zimmers

Oregon State University

Kristen Karbon

University of Michigan - Ann Arbor

Joseph Lentino

Boston College

Calculus 2 / BC Courses

Lectures

Video Thumbnail

04:35

Volume - Intro

In mathematics, the volume of a solid object is the amount of three-dimensional space enclosed by the boundaries of the object. The volume of a solid of revolution (such as a sphere or cylinder) is calculated by multiplying the area of the base by the height of the solid.

Video Thumbnail

06:14

Review

A review is a form of evaluation, analysis, and judgment of a body of work, such as a book, movie, album, play, software application, video game, or scientific research. Reviews may be used to assess the value of a resource, or to provide a summary of the content of the resource, or to judge the importance of the resource.

Join Course
Recommended Videos

03:17

The graph of the derivative $ f' $ of a function $ f $ is shown. (a) On what i…

0:00

The graph of the derivative $f^{\prime}$ of a function $f$ is shown. (a) On wha…

02:04

The graph of the derivative $f^{\prime}$ of a function $f$ is shown. (a) On wh…

02:29

The graph of the derivative f' of a function f Is shown; Y=f'() (a) On what int…

01:35

The graph of the derivative f' of a function fis shown (a) On what interval is …

01:36

The graph of the derivative f' of a function f is shown_ y = f'(x) (a) On what …
Additional Mathematics Questions

00:33

Arrange the following decimal numbers in descending order.
8.51, 8.06, 9.…

01:49

4. The HCF of two numbers is 40. If the productof the two numbers is 52800, …

03:51

1. How can Diego package all the 64 cookies so that each bag has the same nu…

01:15

In the arithmetic sequence -117,-114,-111.......
a)Write the algebraic fo…

00:42

2. What is a variable?a. A value that does not changeb. A symbol, usually a …

01:09

the sum of the exponets of the prime factors in the prime factorisation of 1…

01:18

3. What is the least number to be subtracted from 1045 to get a number exact…

01:08

an acute angle made by a side of a parallelogram with other pair of parallel…

01:20

By hiring a boat x, Rohan took 12 hours to cover a round trip between two po…

01:55

The amount of mixture required to make one biscuit is 18 cu.cm. Before it is…

Add To Playlist

Hmmm, doesn't seem like you have any playlists. Please add your first playlist.

Create a New Playlist

`

Share Question

Copy Link

OR

Enter Friends' Emails

Report Question

Get 24/7 study help with our app

 

Available on iOS and Android

About
  • Our Story
  • Careers
  • Our Educators
  • Numerade Blog
Browse
  • Bootcamps
  • Books
  • Notes & Exams NEW
  • Topics
  • Test Prep
  • Ask Directory
  • Online Tutors
  • Tutors Near Me
Support
  • Help
  • Privacy Policy
  • Terms of Service
Get started